Leukemia and Lymphoma of Natural Killer Cells

Ritsuro Suzuki

Malignant hematolymphoid disorders arising from NK cells have become widely recognized over the past decade. The two forms of NK-cell malignancy, aggressive NK-cell leukemia (ANKL) and extranodal NK-cell lymphoma of nasal type (ENKL) are both characterized by the proliferation of tumor cells with an NK-cell like immunophenotype. ANKL usually presents with bone marrow tumor cells accompanied by circulating leukemic cells, and hepatosplenomegaly is a common clinical feature. ENKL most frequently affects the nasal or paranasal regions, with cutaneous involvement also being common. Approximately 70 percent of ENKL present with localized tumor cells, and follow an indolent clinical course, but, in advanced cases, tumors rapidly expand and are frequently fatal. Tumor cells from both ANKL and ENKL are surface CD3− and CD56+ but differ in their expression of CD16. Epstein-Barr virus (EBV) is found in most cases of NK-cell leukemia/lymphoma, suggesting an oncogenic role, but patients may have bclonal or polyclonal populations of malignant cells based on differential EBV genome incorporation. NK-cell neoplasms are frequently resistant to chemotherapy due to p-glycoprotein expression and associated multidrug resistance. The prognoses of both localized and advanced stages of NK-cell malignancies are worse than most other lymphoid malignancies, but studies are currently underway to assess the safety and efficacy of novel chemoradiotherapy regimens for the treatment of these neoplasms.

INTRODUCTION

The classification of lymphoid neoplasms has changed much in recent years. In the Working Formulation1, lymphocyte lineage was not a factor in neoplasm classification, but the Revised-European-American Classification for Lymphoid Neoplasms (REAL Classification) once again adopted these standards, originally in place in the Kiel Classification2,3. However, neoplasms arising from NK-cells were not correctly defined in the REAL Classification, and inclusion of NK-cell neoplasms did not occur until the new World Health Organization (WHO) Classification4. In addition to aggressive NK-cell leukemia (ANKL) and extranodal NK-cell lymphoma, nasal type (ENKL), which are listed in the WHO Classification, there are several provisional categories of NK-cell neoplasms (Table 1). In this review, I describe the history of NK-cell neoplasms and the future prospects for disease management and treatment for these malignancies with extremely poor prognoses.

Definition of NK-cells

NK-cells were first recognized as a functional subset of lymphocytes mediating major histocompatibility complex-nonrestricted cytotoxicity5. NK-cells are morphologi-

Table 1. List of NK-cell neoplasms

<table>
<thead>
<tr>
<th>Disease</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Precursor NK-cell neoplasms</td>
<td></td>
</tr>
<tr>
<td>(1) Myeloid/NK cell precursor acute leukemia</td>
<td>MNKL</td>
</tr>
<tr>
<td>(2) Blastic NK cell lymphoma</td>
<td>BNKL</td>
</tr>
<tr>
<td>2. Mature NK-cell neoplasms</td>
<td></td>
</tr>
<tr>
<td>(1) Aggressive NK-cell leukemia</td>
<td>ANKL</td>
</tr>
<tr>
<td>(2) Extranodal NK-cell lymphoma, nasal type</td>
<td>ENKL</td>
</tr>
<tr>
<td>(3) Chronic NK-cell lymphocytosis*</td>
<td>CNKL</td>
</tr>
</tbody>
</table>

* Uncertain malignant potential.
Recognition of NK-cell leukemia and lymphoma

Leukemia of NK-cells was first described by Fernandez et al. and Koizumi et al. in 1986 as “aggressive NK-cell leukemia (ANKL)” (Fig. 1)[10,11]. Both groups demonstrated NK-activity and IL-2 responsiveness in the leukemic cells and concluded the neoplasms were of NK-cell origin. Imamura et al. also identified leukemia of NK-cell origin, but their findings were not published for several years[12]. Based on cellular morphology, these malignancies were considered a type of LGL leukemia[13], but we now know that this classification encompasses a very heterogeneous collection of diseases. Alternative names for ANKL were aggressive LGL leukemia, non-T LGL leukemia, and NK-LGL leukemia, and in the REAL Classification this disease entity was given the new category LGL leukemia, NK-cell type (Fig. 1)[3]. However, this categorization emphasized the morphological features of the leukemic cells, rather than cell origin. Chronic T-LGL leukemia, also classified as an LGL leukemia, exhibits the same cellular morphology as ANKL, but dramatically differs in cell origin, phenotype, genotype, function and clinical course, and these differences are summarized in Table 2[13,14]. These differences led to the recognition of ANKL as a separate entity from T-LGL leukemia in the WHO Classification[4].

Lymphoma of NK-cells was originally incorrectly identified as T-cell lymphoma of nasal origin because of the phenotypic similarity of T-cells and NK-cells[15]. Lethal midline granuloma was a disease of undetermined neoplastic significance occurring in the mid facial area, and biopsied specimens from these lesions exhibited marked necrosis with inflammatory changes. Ishii et al. first recognized the presence of tumor cells expressing CD3 in this lesion and termed this disease “nasal T-cell lymphoma”[15]. Further characterization of this tumor revealed angiocentric infiltration of tumor cells, and the terminology of “angiocentric T-cell lymphoma” was proposed[16-18]. In the REAL Classification, this type of nasal lymphoma was considered an angiocentric lymphoma, together with pulmonary lymphomatoid granulomatosis of B-cell origin, based on morphological features[3]. However, Suzumiya et al. demonstrated that tumor cells of this nasal lymphoma express cytoplasmic CD3 and CD56, but not T-cell receptors, suggesting their NK-cell origin[19]. On November 11-14, 1994, a workshop on NK-cell lymphomas was held in Hong Kong[20]. At this meeting, tumor angiocentricity was not considered an absolute characteristic of nasal NK-cell lymphomas, and similarities with non-nasal NK-cell lymphomas were confirmed. Thus, the nomenclature of “nasal and nasal-type T/NK-cell lymphoma” was employed. In the WHO Classification, the extranodal origin of this lymphoma was emphasized, and the terminology “extranodal NK/T-cell lymphoma (ENKL), nasal-type” was adopted[4].

Clinical characteristics of aggressive NK-cell leukemia

ANKL is characterized by the systemic proliferation of NK-cells, with a highly aggressive clinical course. It
accounts for less than 1% of lymphoid malignancies in Japan, and is also rare in Hong Kong, Korea and Taiwan (personal communications). The NK-cell Tumor Study Group in Japan reported the largest series in the literature, examining 22 patients. When data from several reports are considered together, ANKL predominantly occurs in younger patients with a median age around 40 years without any sex predilection. Patients frequently present with B-symptoms, such as fever, night sweat or weight loss, and hematological findings are consistent with leukemia, including circulating and bone marrow leukemic cells, neutropenia, anemia and thrombocytopenia. Hepatosplenomegaly frequently occurs, but does not affect all patients. Cutaneous or central nervous system involvement is uncommon. Interestingly, hypersensitivity to mosquito bites is sometimes a preceding feature of NK-cell leukemia, particularly in younger patients. Additionally, leukemic progression of nasal NK-cell lymphoma was also reported. Leukemic cells exhibit a LGL morphology, surfaceCD3−CD2+CD56+ immunophenotype, and germline configurations of T-cell receptor genes. CD16 and cytoplasmic CD3 are positive in many cases. Expression of CD122 and the lack of CD25 suggest ANKL cells originate as cytotoxic NK-cells, rather than immunoregulatory NK-cells. As with ENKL of nasal type, tumor cells are Epstein-Barr virus (EBV) positive. Although no recurrent cytogenetic abnormalities have been identified, alterations in chromosome 7 occur relatively frequently in ANKL. Chemotherapy for acute leukemia or aggressive lymphoma is not highly effective, resulting in poor prognosis for this disorder. Resistance to chemotherapy is likely mediated by p-glycoprotein, a product of the $MDR1$ gene, that is expressed in this type of lymphoma. Most affected patients die within 2 years, many within 6 months after diagnosis.

Clinical characteristics of extranodal NK-cell lymphoma, nasal type

ENKL is characterized by extranodal involvement, particularly the nasal/paranasal area, and is referred to as “nasal NK-cell lymphoma” in this situation. ENKL is rare in Western countries, but is more frequent in East Asia and Central and South America. It represents 3.3% of all non-Hodgkin’s lymphoma in Japan, 6% in Hong Kong, 8% in Korea, and 5% in Taiwan. ENKL predominantly occurs in middle-aged patients, and it is significantly more prevalent in men. This type of lymphoma, particularly advanced-stage cases, is associated with hemophagocytic syndrome, and some patients develop the sudden onset of pancytopenia or multi organ failure. Histopathologically, the lymphoma cells are polymorphous and show an angiocentric growth pattern, with subsequent vascular obstruction and prominent necrosis. The immunophenotype of tumor cells resembles that of NK-cells (surfaceCD3−cytoplasmicCD3s+CD56+) in

| Table 2. Phenotypic profile of NK-cell neoplasms and other related/CD56+ T-cell lymphomas |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| | Aggressive NK-cell leukemia | Extranodal NK-cell lymphoma | Hepatosplenic T-cell lymphoma | Enteropathy-type T-cell lymphoma | T-LGL leukemia |
| CD2 | + | + | + | + | + |
| sCD3 | − | − | − | − | − |
| cyCD3 | + | + | + | + | + |
| CD4 | − | − | − | − | − |
| CD5 | − | − | +/− | − | + |
| CD7 | +/− | +/− | +/− | + | + |
| CD8 | +/− | +/− | +/− | + | +/− |
| CD16 | +(−/−) | − | +/− | − | − |
| CD43 | + | + | + | + | + |
| CD45RO | + | + | + | + | + |
| CD56 | + | + | +(−/−) | + | − |
| CD57 | − | − | (−/+) | − | + |
| TCR | − | − | + | +/− | + |
| Granzyme B | + | + | +/− | + | − |
| TIA-1 | + | + | + | + | + |
| EBV | + | + | − | − | − |
most cases19,50-52, but, in rare circumstances, is more consistent with a T-cell phenotype. Most ENKL cells also express cytotoxic granule-associated proteins, such as perforin, granzyme B, TIA-1, and granzyme M53-59. Increased expression of Fas-ligand is commonly seen in ENKL, but this is non-specific and seen in a number of aggressive lymphomas55,60-62. NK inhibitory receptors, such as CD94 or NKG2A are also expressed in NK-cell neoplasms, but such expression is not uniform or consistent63-67. However, expression of CD94 is reported to confer a better prognosis in ENKL67. EBV is found in the tumor cells in virtually all cases, and ENKL, nasal-type is now regarded as an EBV-related neoplasm68-70. Deletions of the long arm of chromosome 6 are frequently seen in ENKL71,72, but this abnormality is also commonly seen in other types of lymphoma73,74. Approximately 70\% of ENKL patients present with limited stage I or II disease52,75-82. In addition to the paranasal area, tumors frequently occur in the skin and soft tissue29,83-90. Regional lymph nodes may be involved, but restriction to nodal disease is extremely rare91. The clinical course of NK-cell lymphoma varies with the clinical stage. Patients with limited stage disease (usually nasal disease) typically have an indolent course with tumor restriction to the original site, but others suffer rapid progression to systemic dissemination often accompanied by hemophagocytosis or disseminated intravascular coagulation. Radiotherapy is effective in the treatment of ENKL, but, as with ANKL, chemotherapy is of limited effectiveness due to the expression of p-glycoprotein37-40, which mediates the active transport of anthracyclines and vinca alkaloids. Therefore, radiotherapy is typically undertaken in patients with limited stage diseases92-101, with or without subsequent chemotherapy. No effective therapies exist for advanced cases, however.

Putative precursor NK-cell neoplasms

At the Hong Kong Workshop for Extranodal T/NK-cell lymphoma in 1994, Drs. Suchi and Mori presented two previously unrecognized forms of CD56-positive lymphoma20. These cases were characterized by unusual skin involvement, blastic morphology, sCD3− CD56+ TdT+ phenotype without B-cell markers, and the lack of Epstein-Barr virus (EBV), and the nomenclature of “blastic NK-cell lymphoma” was assigned to this disease20. There are several reports of this type of lymphoma, which were not specifically diagnosed due to their unusual phenotype that is not consistent with a clear cellular origin87-89,102-108. These tumors were hypothesized to originate from precursor NK-cells due to their phenotypic similarity (Fig. 2), but many blastic NK-cell lymphoma (BNKL) express CD437,89,104-108. Recently, many clinicopathologic differences between CD4-positive and -negative BNKL have been described, suggesting that these two subgroups constitute distinct diseases109,110. However, it remains unclear whether CD4 expression or anatomic location (i. e., cutaneous vs. non-cutaneous) should be the primary factor determining categorization. Occasionally, leukemic cases of

![Fig. 2.](image-url)

Fig. 2. Differentiation pathway of NK-cells and corresponding NK-cell neoplasms. NK-cells differentiate from stem cells through the myeloid antigen positive NK/T bi-potential progenitor and the lineage committed progenitor. The myeloid/NK cell precursor acute leukemia originates from the myeloid antigen positive progenitor, and blastic NK-cell lymphoma are derived from a relatively mature, NK-cell lineage committed progenitor. Mature NK-cell neoplasms, aggressive NK-cell leukemia, extranodal NK-cell lymphoma of nasal and extranasal origin, and chronic NK-cell lymphocytosis arise from transformed mature NK-cells.
this tumor have been reported111-116, but no prominent clinically-pathologic differences between the leukemic and lymphomatous types have been identified110. Several groups have proposed that CD4+ BNKL arise from the precursors of plasmacytoid dendritic cells (pDCs)117,118 or plasmacytoid monocytes119, on the basis of CD123 expression and interferon production by the tumor cells. However, pDCs are normally present in lymph node and are rare in the skin. Additionally, CD56 is not expressed on normal pDCs120,121 except for a very minor population122,123, and CD123, which is expressed on a variety of normal and malignant hematopoietic cells is not a specific marker for pDCs124,125. CD4+/− CD56− CD123+ leukemia/lymphoma with pDC features is the real pDC malignancy126,127. Thus, the true origin of BNKL needs further studies.

In 1997, another type of immature CD56-positive hematologic tumor was identified as “myeloid/NK cell precursor acute leukemia” (Fig. 2)128. This leukemia was characterized by pronounced extramedullary involvement, immature lymphoblastoid cellular morphology without myeloperoxidase reactivity, a CD7+, CD33+, and CD56+ phenotype, myeloid chemosensitivity and poor prognosis. These cases were classified as AML M0 according to the FAB classification129,130, and were distinct from CD56-positive tumors of myeloid/NK cell acute leukemia with mature promyelocytic morphology131, as well as BNKL99. However, this form of leukemia was later found to exhibit different clinical characteristics from CD7− or CD56− AML M0132, and was thus a distinct disease entity among AML subclasses.

These CD56-positive immature leukemia/lymphomas are included in the NK-cell Tumor Study Group classification scheme, but have not yet been shown to originate from precursor NK-cells. Strictly, these diseases should be regarded as CD56-positive immature hematolymphoid tumors, but the phenotypic similarities to NK-cell precursors may facilitate our understanding of these tumors. The NK-cell Tumor Study Group has proposed a provisional classification scheme of NK-lineage malignancies including these ill-defined diseases144,133.

Other CD56-positive malignancies to be differentially diagnosed

CD56 is not a specific NK-cell marker, and several CD56-positive tumors have been identified (Table 3). In acute myeloid leukemia (AML), CD56 is expressed in approximately 20% of cases, particularly those of the monocytic lineage134-136. Although AML is a heterogeneous disease, the expression of CD56 suggests a poor prognosis in AML in general137-139, or for several specific subtypes140-144. CD56 was first reported as a prognostic factor for patients with AML M2 with the t(8;21)(q22;q22) translocation140, but this has not been verified by other groups. In the meantime, several groups have shown the prognostic significance of CD56 expression in acute promyelocytic leukemia with the t(15;17)(q22;q21) translocation141-144. Differentiation of non-nasal NK-cell lymphomas occurring in the skin or soft tissue from extramedullary AML is particularly important for prognostic and therapeutic decisions. However, in acute lymphoblastic leukemia CD56 expression is relatively rare134,145-147.

CD56 is also expressed in a subset of T-cells, as well as 5-20% of peripheral T-cell lymphomas148-153. Some conditions have been described as “NK-like T-cell lymphoma”96,90,154,155, but this label does not accurately reflect the T-lymphocyte origin of this lymphoma and was therefore not included in the current WHO classification156. Because NK-cell and T-cell lymphomas share the cyCD3+ CD56+ phenotype, and the expression of sCD3 and cyCD3 is usually indistinguishable on paraffin sections, appropriate diagnosis is

\begin{table}
\centering
\caption{CD56-positive tumors other than NK-cell lineage}
\begin{tabular}{llll}
\hline
Category & Frequency & Subtype & Significance of CD56 expression \\
\hline
Acute myeloid leukemia & 20% & Monocytic leukemia (FAB M4/M5) & Possible prognostic factor \\
& & M2 with t(8;21) & Prognostic factor \\
& & Acute promyelocytic leukemia & Possible prognostic factor \\
Peripheral T-cell lymphoma & 5-10% & Anaplastic large cell lymphoma & Not prognostic \\
& & Peripheral T-cell lymphoma, unspecified & \\
Multiple myeloma & 50-70% & Neuroblastoma & Not prognostic \\
Small round cell tumor & Most cases & PNET & \\
& & Ewing sarcoma & \\
& & Wilms tumor & \\
& & Rhabdomyo sarcoma & \\
& & Small cell lung cancer & \\
\hline
\end{tabular}
\end{table}
Cells derived from hepatosplenic T-cell lymphoma and enteropathy-type T-cell lymphoma are usually CD56 positive (Table 2) but other T-cell lymphomas do not display consistent CD56 expression. On the other hand, CD56 expression is a strong prognostic factor for anaplastic large cell lymphoma, but not peripheral T-cell lymphoma, unspecified.

As CD56 is a neural cell adhesion molecule, it is also expressed in non-hematologic tumors, including neuroectodermal tumors. Its expression has been documented in neuroblastoma, PNET, Ewing sarcoma, Wilms tumor, rhabdomyosarcoma, malignant schwannoma and small cell lung cancer. As these tumors can also exhibit a small round morphology, proper exclusion of these tumors from the differential diagnosis is essential.

Genetic features and oncogenes

Currently, no genetic abnormalities specific for NK-lineage neoplasms have been identified. Deletion of the long arm of chromosome 6 was reported to be the most frequent cytogenetic aberration, but no target or tumor suppressor genes have been identified in this region to date. Additionally, no consistent oncogenes or tumor suppressors have been identified for NK-cell lymphoma (Table 4). Homozygous deletion of p15 and p16/p14 were identified in approximately 30% of the cases studied, and mutation of the FAS gene and methylation of p73, SHP1, hMLH1, p16, and RARβ have been identified in more than half of the cases. Mutation of β-catenin and methylation of p21 and p15 were observed less frequently, but mutation of N/K/H-RAS and N/c-MYC genes were found in only a small minority of cases. Ethnicity also affects genetic alterations in NK-cell lymphoma including differences between Japanese and Chinese patients for p73, p53, and c-Kit alterations. A more precise characterization of the genetic changes associated with NK-cell lymphoma, as well as any role for EBV infection, needs further clarification.

Complementary genetic hybridization (CGH) has been used to investigate genetic aberrations in NK-cell lymphoma. These studies identified the gain of 1p, 6p, 11q, 12q, 17q, 19p, 20q, and the loss of 6q, 11q, and 13q and 17p in several different samples, but several differences were also identified between the cases examined. Recently, an array-based CGH study was performed and identified new gain/loss regions, which could not be identified using conventional CGH analyses. This study also demonstrated clear genetic difference between ANKL and ENKL, suggesting that these are two distinct disease entities. This data supports the clinicopathologic features identified between ANKL and ENKL. These differences may represent differences in ENKL between localized and advanced cases, but further studies are needed to clarify this issue.

Epstein-Barr virus (EBV)

In most mature NK-cell leukemias and lymphomas, clonal EBV proliferation has been found in tumor cells. Most tumors are associated with EBV with latency II with the occasional absence of LMP-1. Binding of EBV to target cells is mediated by CD21 in B-cells and NK/T-cells, but recent studies suggest the existence of other binding pathways, particularly in epithelial cells. Although the EBV-receptor remains unclear in CD21-negative NK-cell tumors, human leukocyte antigen class II β plays an important role for the internalization of EBV in NK-cells. The EBV genome is linear in the viral particles, but circularizes in an episomal form after infection with a uniquely sized terminal repeat. Therefore, EBV can

<table>
<thead>
<tr>
<th>Gene</th>
<th>Type of aberration</th>
<th>Frequency</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>p73</td>
<td>Methylation</td>
<td>94% (China, Hong Kong), 10% (Japan)</td>
<td>174, 180</td>
</tr>
<tr>
<td>hMLH1</td>
<td>Methylation</td>
<td>60-70% (China, Hong Kong)</td>
<td>176</td>
</tr>
<tr>
<td>RARβ</td>
<td>Methylation</td>
<td>56%</td>
<td>176</td>
</tr>
<tr>
<td>SHP1</td>
<td>Methylation</td>
<td>91%</td>
<td>175</td>
</tr>
<tr>
<td>p16</td>
<td>Methylation</td>
<td>63%</td>
<td>176</td>
</tr>
<tr>
<td>p15</td>
<td>Methylation</td>
<td>48%</td>
<td>176</td>
</tr>
<tr>
<td>p15/p16</td>
<td>Homozygous deletion</td>
<td>38%</td>
<td>170, 171</td>
</tr>
<tr>
<td>Fas</td>
<td>Mutation</td>
<td>50-60%</td>
<td>172, 173</td>
</tr>
<tr>
<td>p53</td>
<td>Mutation</td>
<td>20-60%</td>
<td>178, 179, 181</td>
</tr>
<tr>
<td>c-KIT</td>
<td>Mutation</td>
<td>5-71% (China), 16-22% (Japan)</td>
<td>178, 182</td>
</tr>
<tr>
<td>b-catenin</td>
<td>Mutation</td>
<td>16-30%</td>
<td>177-179</td>
</tr>
<tr>
<td>N/K/H-Ras</td>
<td>Mutation</td>
<td>Rare (< 5%)</td>
<td>171, 177-179</td>
</tr>
<tr>
<td>N/c-Myc</td>
<td>Amplification/Mutation</td>
<td>None</td>
<td>171</td>
</tr>
</tbody>
</table>

Table 4. Aberrations of oncogenes in NK-cell leukemia/lymphoma
be detected by Southern blotting as a single band, but genomic integration of EBV occurs in approximately 10% of the cases198. Meanwhile, biclonal or polyclonal EBV genomes are found in occasional cases, and the lytic phase of EBV infection has been seen in some overlapping cases. HANK-1 is a cell line established from tumor cells of disseminated NK-cell lymphoma199. Southern blot analysis using a probe specific for the EBV terminal repeat demonstrated that this cell line was derived from a minor clone in original tumor cells (Fig. 3). In most cases, isolated tumor cells have the same phenotype of typical NK-cell neoplasms, suggesting a common tumor origin with differential EBV clonality. Because the EBV genome exists within cells as an episome without integration in most cases, cellular reinfection is possible causing the appearance of different EBV clones. This has been demonstrated in other cases167,200,201, and therefore, EBV monoclonality is not always required for the diagnosis of NK-cell malignancies.

The presence of EBV-DNA in the serum/plasma of patients was first recognized in nasopharyngeal carcinoma using polymerase chain reaction (PCR)202. Later, it was also found in other EBV-associated tumors including NK-cell lymphoma203. Spontaneous death of tumor cells leads to the release of EBV DNA, and the presence of EBV DNA in the serum does not necessarily indicate the presence of active EBV in the circulating blood. Therefore, the upper size limit of detectable EBV-DNA is 500 bp, and the size less than 300 bp is desirable for diagnosis or detection of minimal residual disease204. Infection-competent EBV is found in the lymphocytes of patients with acute or chronic EBV infection205, and PCR using peripheral mononuclear cells or whole blood is applied for these patients206. Although this is a more sensitive method than serum/plasma PCR207,208, it is not suitable because it can also detect bystander EBV in immunocompromised patients. A prospective study comparing the prognostic significance between plasma and whole blood as templates for real-time PCR is now under way.

Cell lines

After the initial recognition of NK-cell leukemia/lymphoma, many cell lines were established from primary tumors that have been invaluable research tools209,210. The cell lines derived from NK-cell neoplasms and related disorders are listed in Table 510,199,200,211-220. The first NK-cell tumor line was established by Yodoi et al. in 1983 from a boy with mediastinal lymphoblastic lymphoma211. Although much relevant clinical information from this case was not provided, the diagnosis according to the current classification scheme seems to fall within the category of ENKL. Likewise, various diagnostic terms were used in the original description of different cell lines, but all can be sorted into three categories, ANKL cell lines10,212-214,217,220, ENKL cell lines199,200,215,218,219, and other NK-cell lines216,219. Several NK-cell lines with abnormal karyotypes have been established from patients without defined malignancies, such as hypersensitivity to mosquito bite, chronic active EBV infection (CAEBV) and hydroa vacciniforme-like eruption. The ability to establish cell lines from these patients supports the hypothesis these diseases are premalignant conditions that may progress to NK-cell leukemia/lymphoma. Most of these cell lines were established from Japanese patients, and are phenotypically similar to the original neoplasms, being positive for CD56 and EBV, and IL-2 dependent. Cell lines derived from ENKL and other categories were all established from Japanese patients and are uniformly positive for CD56 and EBV. In contrast, several lines were established from non-Oriental subjects, and these are occasionally negative for CD56213,214 or EBV217,220. Existence of CD56 may not be essential for the leukemogenesis of NK-cell leukemia. The absence of EBV is consistent with a diagnosis of ANKL and further differentiates it from ENKL22,25,28,32. These cell lines are faithful replicas of the actual in vivo NK-cell leukemias/lymphomas. Further studies, particularly genetic investigations, on these cell lines will provide invaluable information on the diagnosis and treatment of NK-cell neoplasms.

Relationship to chronic active EBV infection

CAEBV is a peculiar situation mainly occurs in children...
or young adults with waxing and waning symptoms. Most patients present with fever, fatigue, lymphadenopathy and/or hepatosplenomegaly, and the EBV genome can be found in peripheral lymphocytes. These symptoms resolve with or without treatments such as anti-inflammatory drugs or steroids but recur after months or years. Occasionally, bona fide NK- or T- cell malignancies develop, and pursue fatal clinical course. Etoposide-containing chemotherapy is effective and a cure can be obtained with hematopoietic stem cell transplant, but the timing of treatment is difficult because of the fluctuating clinical course. CAEBV is not simply an EBV infection, but it represents an indolent lymphoproliferative disorder. Young patients with CAEBV need careful observations to judge the timing of treatment. In the future, optimal therapeutic strategies for CAEBV need to be further explored.

Table 5. Cell lines derived from NK-cell neoplasms and related disorders.

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Age, sex</th>
<th>Ethnicity</th>
<th>Original description of disease</th>
<th>CD56</th>
<th>EBV</th>
<th>Cytokine dependency</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggressive NK-cell leukemia cell line</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Unnamed) 71 M White</td>
<td></td>
<td></td>
<td>Aggressive NK-cell leukemia</td>
<td>ND</td>
<td>ND</td>
<td>IL-2</td>
<td>10</td>
</tr>
<tr>
<td>NK-92 50 M Unknown</td>
<td></td>
<td></td>
<td>LGL-NHL with BM involvement</td>
<td>+</td>
<td>+</td>
<td>IL-2</td>
<td>212</td>
</tr>
<tr>
<td>TKS-1 21 M Japanese</td>
<td></td>
<td></td>
<td>Aggressive LGL leukemia</td>
<td>− *</td>
<td>ND</td>
<td>IL-2</td>
<td>213</td>
</tr>
<tr>
<td>NKL 62 M White</td>
<td></td>
<td></td>
<td>NK-LGL leukemia</td>
<td>− *</td>
<td>−</td>
<td>IL-2</td>
<td>214</td>
</tr>
<tr>
<td>KYHG-1 45 F Japanese</td>
<td></td>
<td></td>
<td>Aggressive NK-cell leukemia</td>
<td>+</td>
<td>−</td>
<td>IL-2</td>
<td>217</td>
</tr>
<tr>
<td>IMC-1 42 M Native American</td>
<td></td>
<td></td>
<td>Aggressive NK-cell leukemia</td>
<td>+</td>
<td>−</td>
<td>IL-2</td>
<td>220</td>
</tr>
<tr>
<td>Extranodal NK-cell lymphoma cell line</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YT 15 M Japanese</td>
<td></td>
<td></td>
<td>Acute lymphoblastic lymphoma with thymoma</td>
<td>+</td>
<td>+</td>
<td>No</td>
<td>211</td>
</tr>
<tr>
<td>HANK-1 46 F Japanese</td>
<td></td>
<td></td>
<td>Nasal-type NK-cell lymphoma</td>
<td>+</td>
<td>+</td>
<td>IL-2</td>
<td>199</td>
</tr>
<tr>
<td>NK-YS 19 F Japanese</td>
<td></td>
<td></td>
<td>Nasal NK-cell lymphoma</td>
<td>+</td>
<td>+</td>
<td>IL-2</td>
<td>215</td>
</tr>
<tr>
<td>SNK-1 24 F Japanese</td>
<td></td>
<td></td>
<td>Nasal NK-cell lymphoma with CAEBV</td>
<td>+</td>
<td>+</td>
<td>IL-2</td>
<td>200</td>
</tr>
<tr>
<td>SNK-3 44 M Japanese</td>
<td></td>
<td></td>
<td>Nasal NK-cell lymphoma</td>
<td>+</td>
<td>+</td>
<td>IL-2</td>
<td>219</td>
</tr>
<tr>
<td>SNK-6 62 M Japanese</td>
<td></td>
<td></td>
<td>Nasal NK-cell lymphoma</td>
<td>+</td>
<td>+</td>
<td>IL-2</td>
<td>218</td>
</tr>
<tr>
<td>Other NK-cell line</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KAI3 13 M Japanese</td>
<td></td>
<td></td>
<td>Hypersensitivity to mosquito bite</td>
<td>+</td>
<td>+</td>
<td>IL-2</td>
<td>216</td>
</tr>
<tr>
<td>SNK-5 14 F Japanese</td>
<td></td>
<td></td>
<td>CAEBV</td>
<td>+</td>
<td>+</td>
<td>IL-2</td>
<td>219</td>
</tr>
<tr>
<td>SNK-10 17 M Japanese</td>
<td></td>
<td></td>
<td>CAEBV</td>
<td>+</td>
<td>+</td>
<td>IL-2</td>
<td>219</td>
</tr>
<tr>
<td>SNK-11 16 F Japanese</td>
<td></td>
<td></td>
<td>Hydroa vacciniforme-like eruption</td>
<td>+</td>
<td>+</td>
<td>IL-2</td>
<td>219</td>
</tr>
</tbody>
</table>

* CD56 was positive in the patients’ original leukemic cells.

or young adults with waxing and waning symptoms. Most patients present with fever, fatigue, lymphadenopathy and/or hepatosplenomegaly, and the EBV genome can be found in peripheral lymphocytes. These symptoms resolve with or without treatments such as anti-inflammatory drugs or steroids but recur after months or years. Occasionally, bona fide NK- or T-cell malignancies develop, and pursue fatal clinical course. Etoposide-containing chemotherapy is effective and a cure can be obtained with hematopoietic stem cell transplant, but the timing of treatment is difficult because of the fluctuating clinical course. CAEBV is not simply an EBV infection, but it represents an indolent lymphoproliferative disorder. Young patients with CAEBV need careful observations to judge the timing of treatment. In the future, optimal therapeutic strategies for CAEBV need to be further explored.

CAEBV typically develops in younger patients after an initial EBV infection, but cases in older individuals are sometimes reported. The diagnosis of such cases relies on the presence of the EBV genome in peripheral blood as detected by PCR. However, the EBV genome is also present in the plasma of patients with EBV-positive malignancies including NK-cell neoplasms, and often indicates of the presence of occult malignancies, particularly in older patients. A comprehensive examination for malignancies is essential in elderly patients before a confident diagnosis of CAEBV can be made.

Chronic NK-lymphocytosis

Chronic NK-lymphocytosis (CNKL) is characterized by a chronic increase in the number of peripheral blood NK-cells without lymphadenopathy or organomegaly. Clinically, the disease presents with an indolent course, and no cytogenetic abnormalities are usually found. Although the disease itself has uncertain malignant potential, rare cases may develop into ANKL. However, this may represent the presence of occult ANKL misclassified as CNKL rather than transformation. Therefore, careful observation is needed for CNKL patients. Because EBV is not usually found in CNKL, testing for EBV may facilitate the differential diagnosis. Seroreactivity to...
HTLV-II has been reported in CNKL, but no evidence of viral DNA was found in the increased NK-cells. CNKL is also associated with reactive conditions against viral infections or underlying solid tumors. Careful whole-body examination is therefore recommended during the clinical management of patients with CNKL.

Therapy for localized extranodal NK-cell lymphoma

Radiotherapy alone has been used for the treatment of limited stage of ENKL, but the 5-year overall survival (OAS) is approximately 50%. In other subtypes of non-Hodgkin’s lymphoma of similar clinical stage, 3 to 4 courses of chemotherapy followed by radiotherapy is now a standard therapy with 5-year overall survival rates of more than 80%. However, this strategy is not effective for the treatment of NK-cell lymphoma. The 5-year overall survival rate is around 40%, which is comparable to or lower than the survival rate seen with radiotherapy alone.

Recently, several groups have treated patients with irradiation of more than 45 to 50 Gy followed by short courses of chemotherapy, and the reported 5-year OAS of this procedure reaches 70%. However, the initial radiotherapy may miss underlying minimal lesions outside the radiation field. Therefore, a strategy of simultaneous chemoradiotherapy, as used for solid tumors, such as esophageal, laryngeal and lung cancers, may be beneficial for the treatment of ENKL.

Currently, the Japanese Clinical Oncology Study Group is performing a prospective evaluation for localized nasal NK/T-cell lymphoma.

Therapy for ANKL or advanced ENKL

Most patients with advanced disease tend to be treated with chemotherapy, such as CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone) or third generation anthracycline-containing regimens, but most patients respond poorly and die within several months. Several reports demonstrated successful treatment using hematopoietic stem cell transplantation (HSCT) for these diseases. Currently, HSCT is the only therapy expected to be curative in advanced cases. However, the results of transplant during relapse are poor, and this requires the development of more effective chemotherapeutic regimens for NK-cell neoplasms.

Aviles et al. described an active combination chemotherapy for advanced nasal NK/T-cell lymphoma, CMED (cyclophosphamide 2 g/m² and methotrexate 200 mg/m² on day 1, etoposide 300 mg/m² on day 1 and 2, and dexamethasone 20 mg/m² on day 1 to 4, supplemented by granulocyte colony stimulating factor on day 2 to 13). They treated 32 patients of stage III/IV disease with three courses of CMED therapy with an interval of two weeks, accompanied by 50 Gy irradiation of the nasal area and another three courses of CMED therapy. The complete remission rate and actuarial 5-year overall and disease free survival rates were 65%, but no other reports using this treatment regimen have been published. Yong et al. achieved good results with another novel chemoradiotherapy using L-asparaginase 6,000 IU/m² and dexamethasone 10 mg/body on days 1 to 7, and vincristine 1.4 mg/m² on day 1. Although the treatment schedule was not uniform, 18 CHOP refractory patients were treated with this regimen from one to six courses with intervals of 21 to 28 days, followed by radiotherapy of 50 to 70 Gy (median: 56 Gy). In addition, several case reports claim an excellent efficacy of L-asparaginase in the treatment of refractory NK-cell malignancies.

Recently, the NK-cell Tumor Study Group started a phase I trial of a new combination chemotherapy named SMILE. The SMILE regimen consists of a steroid hormone, methotrexate, ifosfamide, L-asparaginase and etoposide, and is a dose-finding study for methotrexate and etoposide (Fig. 4). Methotrexate is administered on the first day, and etoposide and ifosfamide are given from the day after. This schedule is based on in vitro pharmacokinetic studies by Kano et al., including unpublished observations. They showed an additive effect of etoposide and ifosfamide when administered on simultaneous days and a synergistic effect of methotrexate when given before these two agents. When methotrexate and other drugs are used simultaneously, they are antagonistic. The toxicity and efficacy of SMILE therapy are now being prospectively evaluated.

Conclusion

Mature NK-cell tumors arise as two distinct entities, ANKL and ENKL. Clear differences exist between these conditions, but ANKL and stage IV ENKL can clinically be managed with the same therapeutic strategy. The mechanism of tumorgenesis remains unclear for both ANKL and ENKL.
and future studies are needed to clarify the molecular pathol-
ogy of these diseases. Unfortunately, the prognoses of these
cancers are poor for both limited and advanced diseases,
and new therapeutic modalities are needed to effectively treat
patients. Appropriate therapeutic strategies should be ex-
ploring in ongoing prospective studies.

ACKNOWLEDGMENTS

I would like to thank Drs. Kazuo Oshimi (Juntendo
University School of Medicine) and Motoko Yamaguchi (Mie
University School of Medicine) for critical reading of this
manuscript.

References

1 The Non-Hodgkin’s Lymphoma Pathologic Classification Project :
National Cancer Institute sponsored study of classification of non-
Hodgkin’s lymphomas : Summary and description of Working
2 Harris NL, Jaffe ES, Stein H, Banks PM, Chan JKC, Cleary ML,
Delsol G, De Wolf-Peeters C, Falini B, Gatter KC, Grogn TM,
Isaacsom PG, Knowles DM, Mason DY, Muller-Hermelink H-K,
Pileri SA, Piris MA, Ralfkiaer E, Warnke RA : A revised
European-American classification of lymphoid neoplasms : a
proposal from the International Lymphoma Study Group. Blood
84 : 1361-1392, 1994
3 Stansfeld AG, Diebold J, Noel H, Kapanci Y, Rilke F, Kelenyi G,
Sundstrom C, Lennert K, van Unnik JA, Mioduszewska O, Wright
DH : Updated Kiel classification for lymphomas. Lancet. 1 :
292-293, 1988
4 Jaffe ES, Harris NL, Stein H, Vardiman JW eds. : Pathology and
Genetics of Tumours of Haematopoietic and Lymphoid Tissues.
World Health Organization Classification of Tumours, IARC Pres,
Lyon, 2001
5 Hercend T, Schmidt RE : Characteristics and uses of natural killer
6 Robertson MJ, Ritz J : Biology and clinical relevance of human
7 Farag SS, VanDeusen JB, Feninger TA, Caligiuri MA. Biology
and clinical impact of human natural killer cells. Int J Hematol
78 : 7-17, 2003
8 Sanchez MJ, Muench MO, Roncarolo MG, Lanier LL. Phillips
JH : Identification of a common T/natural killer cell progenitor in
9 Shibuya A, Nagayoshi K, Nakamura K, Nakauchi H : Lympho-
kine requirement for the generation of natural killer cells from
CD34 hematopoietic progenitor cells. Blood 85 : 3538-3546,
1995
10 Fernandez LA, Pope B, Lee C, Zayed E : Aggressive natural
killer cell leukemia in an adult and establishment of an NK cell
K, Nakarai T, Kato E, Taniguchi N, Nakamura H : Malignant
clonal expansion of large granular lymphocytes with a Leu-11+,
Leu-7- surface phenotype : in vitro responsiveness of malignant
cells to recombinant human interleukin 2. Blood 68 : 1065-1073,
1986
12 Imamura N, Kusunoki Y, Kawa-Ha K, Yunuma K, Haraj Oda,
Abe K, Dohy H, Inada T, Kajihara H, Kuramoto A : Aggressive
natural killer cell leukemia/lymphoma : Report of four cases and
13 Loughran Jr. TP : Clonal diseases of large granular lymphocytes.
Blood 82 : 1-14, 1993
14 Oshimi K, Yamada O, Kaneko T, Nishinarita S, Iizuka Y, Urabe
A, Imamori T, Asano S, Takahashi S, Hattori M, Naoahara T, Ohira
Y, Toagawa A, Masuda Y, Okubo Y, Furuasawa S, Sakamoto S,
Omine M, Morki M, Tsutumi E, Mizogochi H : Laboratory find-
ings and clinical courses of 33 patients with granular lymphocyte-
proliferative disorders. Leukemia 7 : 782-788, 1993
15 Ishii Y, Yamanaka N, Ogawa K, Yoshida Y, Takami T, Matsuura
A, Isago H, Kataura A, Kikuchi K : Nasal T-cell lymphoma as a
type of so-called “lethal midline granuloma”. Cancer 50 :
2336-2344, 1982
16 Stamenovic I, Toccanier MF, Kapanci Y : Polymorphic reticulo-
sis (lethal midline granuloma) and lymphomatoid granulomatosis :
identical or distinct entities ? Virchows Arch A Pathol Anat
Histo 390 : 81-91, 1981
17 Chan JKC, Ng CS, Nga KC, Hui PK, Lo ST, Lau WH :
Angiocentric T-cell lymphoma of the skin. An aggressive lympho-
ma distinct from mycosis fungoides. Am J Surg Pathol 12 :
861-876, 1988
18 Aviles A, Rodriguez L, Guzman R, Talavera A, Garcia EL, Diaz-
Maqueo JC : Angiocentric T-cell lymphoma of the nose, para-
 nasal sinuses and hard palate. Hematol Oncol 10 : 141-147, 1992
19 Suzumiya J, Takeshita M, Kimura M, Kikuchi M, Uchida T,
Hisano S, Eura Y, Kozuru M, Nomura Y, Tomita K, Komiyama S,
Okumura M : Expression of adult and fetal natural killer cell
20 Jaffe ES, Chan JKC, Su I-J, Fizzera G, Mori S, Feller AC, Ho
FC : Report of the workshop on nasal and related extranodal
20 : 103-111, 1996
21 Lymphoma Study Group of Japanese Pathologists : The World
Health Organization classification of malignant lymphomas in
Japan : Incidence of recently recognized entities. Pathol Int 50 :
861-876, 1988

J Clin Exp Hematopathol
 Vol 45, No 2, Dec 2005

60
51 Chan JKC, Tsang WY, Pau MY : Discordant CD3 expression in NK-CELL LEUKEMIA/LYMPHOMA
lymphomas when studied on frozen and paraffin sections. Hum Pathol 26 : 1139-1143, 1995

NK-CELL LEUKEMIA/LYMPHOMA

R. Suzuki

147 Pombo-de-Oliveira MS, Campos MM, Bossa YE, Alencar DM, Curvello C, Agudelo DP, Mendonca N, Pereira E, Macedo-Silva ML : Acute leukemia with natural killer cells antigens in Brazi-
R. Suzuki

Yoon J, Ko YH : Deletion mapping of the long arm of chromosome 6 in peripheral T and NK cell lymphomas. Leuk Lymphoma 44 : 2077-2082, 2003

Sugimoto KJ, Kawamata N, Sakajiri S, Oshimi K. Molecular
analysis of oncogenes, ras family genes (N-ras, K-ras, H-ras), myc family genes (c-myc, N-myc) and mdm2 in natural killer cell neoplasms. Jpn J Cancer Res 93 : 1270-1277, 2002

196 Isobe Y, Sugimoto K, Yang L, Tamayose K, Egashira M, Kane-
R. Suzuki

ko T, Takada K, Oshimi K: Epstein-Barr virus infection of human natural killer cell lines and peripheral blood natural killer cells. Cancer Res 64 : 2167-2174, 2004

Wadowsky RM, Laus S, Green M, Webber SA, Rowe D: Measurement of Epstein-Barr virus DNA loads in whole blood and plasma by TaqMan PCR and in peripheral blood lymphocytes by competitive PCR. J Clin Microbiol 41 : 5245-5249, 2003

