Case Study

Diffuse Large B-Cell Lymphoma with Mass Lesions of Skull Vault and Ileocecum

Shigeki Kosugi,1) Masaaki Kume,2) Joji Sato,3) Ikuo Sakuma,4) Junta Moroi,5) Keiichi Izumi,6) Yasukazu Sato,6) Naoya Nakamura,7) Masatomo Takahashi,1) and Ikuo Miura1)

We report a rare case of non-Hodgkin lymphoma with mass lesions of skull vault and ileocecum. The patient was an 82-year-old Japanese woman who exhibited a painless subcutaneous scalp tumor in the right parietal region associated with no neurological abnormalities. Magnetic resonance imaging of the head demonstrated a mass in the skull vault with iso- to hypointense signals on both T1- and T2-weighted imaging. Biopsy of the mass revealed that the tumor comprised large cells that were immunoreactive for CD20 (L-26) and CD79a. Diffuse large B-cell lymphoma (DLBCL) was therefore diagnosed. Further investigation could not identify any other evidence of systemic lymphoma other than ileocecal lesions. She was treated by irradiation (45 Gy) of the mass on the parietal bone and with rituximab, pirarubicin, cyclophosphamide, and vincristine. The patient achieved complete remission after 3 cycles of systemic chemotherapy. As of 30 months after presentation, no signs of lymphoma have been found. (J Clin Exp Hematop 53(3): 215-219, 2013)

Keywords: cranial vault lymphoma, colonic lymphoma, diffuse large B-cell lymphoma, radiation, chemotherapy

INTRODUCTION

The involvement of bone in disseminated non-Hodgkin lymphoma (NHL) is not uncommon, occurring in up to 25% of patients.1,2 Primary involvement of the bone is extremely rare in Hodgkin lymphoma, whereas NHL arises from a skeletal location in up to 4% of cases, particularly in the long bones of the upper and lower extremities, the pelvis, and the spine.1,2 Initial involvement of the skull at presentation is extremely rare and primary cranial vault lymphoma constitutes only 0.2% of lymphoma cases.3 No consensus has been reached regarding the treatment for lymphoma of the skull.

We here discuss the biological characteristics and treatment of our case compared with previously reported cases of solitary skull vault lymphoma.

CASE REPORT

An 82-year-old Japanese woman visited hospital with a painless subcutaneous scalp tumor on the parietal region. Performance status was 0 according to the Eastern Cooperative Oncology Group.4 The patient had a past history of chronic hepatitis C, but anti-human immunodeficiency virus antibody was negative. There were no episodes of head injury before the emergence of the subcutaneous scalp mass. Physical examination revealed a firm nonpulsatile and immovable subcutaneous mass measuring 3.0 × 3.0 cm in the right parietal area. She was afebrile, with no lymphadenopathy or hepatosplenomegaly. Magnetic resonance imaging (MRI) of the head demonstrated a solitary mass of the skull vault with iso- to hypointense signals on both T1- and T2-weighted imaging (Fig. 1). The center of the mass was located within diploe and projected into inner and outer tables. The skull was completely destroyed and the tumor was adjacent to the dura.

Biopsy of the subcutaneous scalp mass showed that the tumor comprised large cells that were immunoreactive for CD20 (L-26) (Figs. 2 & 3) and CD79a, but not CD3, CD5, bcl-2, or in situ hybridization for Epstein-Barr virus-encoded RNA (EBER)-1, indicating diffuse large B-cell lymphoma.
The patient was admitted to our hospital. Hematological examination on admission showed a white blood cell count of 5,460/mm³ with a normal differential, hemoglobin level of 10.0 g/dL, and platelet count of 139,000/mm³. Blood biochemistry was unremarkable. Serological examination showed elevated soluble interleukin-2 receptor (1,093 U/mL). Bone marrow aspiration and biopsy from the posterior iliac spine revealed no marrow involvement. Cerebrospinal fluid cytology was negative for lymphoma cells. Contrast-enhanced computed tomography of the neck, chest, abdomen, and pelvis showed no evidence of lymphoma lesions. Bone scintigraphy revealed no abnormal uptake other than in the parietal bone lesion. However, while upper gastrointestinal endoscopy revealed no lymphoma lesion, total colonoscopy revealed mass lesions in the ileocecum.
demonstrated mass lesions at the ileocecum (Fig. 4) and a biopsy was taken, which confirmed the diagnosis of DLBCL. The tumor cells were immunoreactive for CD20 (L-26) and CD79a, but not CD3 and bcl-2. The ileocecal mass was smaller than the subcutaneous scalp mass.

The patient was referred to our hospital for radio- and chemotherapy. The skull vault lymphoma was treated first because ileus due to ileocecal mass lesions was considered unlikely. Whole brain was irradiated with 34.2 Gy in 17 fractions, involving field irradiation with 10.8 Gy in 6 fractions over 36 days. A few days after irradiation, the subcutaneous scalp tumor was not palpable. After completion of radiotherapy, the patient was treated with systemic chemotherapy. She was administered 500 mg of rituximab on day 1, and then 40 mg of pirarubicin, 700 mg of cyclophosphamide, and 1.4 mg of vincristine on day 2. As she had a past history of chronic hepatitis C, prednisolone was not used. Systemic chemotherapy was interrupted by severe myelosuppression after the completion of 3 cycles. Tumor regression of ileocecal lesions was confirmed by total colonoscopy after 3 cycles of systemic chemotherapy. As of 30 months after presentation, no signs of lymphoma have been found.

DISCUSSION

Primary bony Hodgkin lymphoma is extremely rare, and NHL originating primarily in bone is seen in only about 4% of patients. Bone involvement is typically seen in the femur, tibia, pelvis, spine, mandible, and scapula. Skul vault lymphoma is different from bony lymphoma of other sites because treatment of the central nervous system (CNS) is required in cases with involvement of cerebral structures by direct invasion. True primary malignant lymphoma of the bone is defined as a solitary mass without any evidence of disease at another site and no systemic dissemination within 6 months of tumor detection. The present case thus does not fulfill the criteria for primary malignant lymphoma of the bone owing to the presence of colon lesions.

We compared the immunohistochemical data of ileocecal lymphoma to those of skull vault lymphoma; however, there were no obvious differences between the two lesions. There has been a case report of concurrent adenocarcinoma and DLBCL in the colon, which first presented with DLBCL in the skull base and ileocecal junction area. The collision tumors were associated with Epstein-Barr virus infection. In this case, EBER-1 in situ hybridization of skull vault lymphoma was negative; however, that of ileocecal lymphoma could not be carried out. Although we attempted to analyze the mutation status of the IGH gene of both mass lesions by polymerase chain reaction (PCR), PCR products of ileocecal lesions were not obtained, so it remains to be determined whether the two lesions have the same clonality. From the results of clinical examination, and immunohistochemical and molecular analyses, we considered that it was difficult to discuss the possibility of systemic lymphoma in this case.

Primary cranial vault lymphomas have been reported in immunocompromised or trauma patients. However, primary NHL of the skull with extra- and intracranial extension without systemic or skeletal manifestation in a non-immunocompromised and non-trauma patient is extremely rare. We found only 19 cases in the literature (Table 1). Such cases of cranial vault lymphoma with systemic involvement, short observation, secondary involvement of the CNS including intra-axial lesions, progressive disease within 6 months, and multifocal primary cranial vault lymphoma are not included in Table 1. Only 1 case is included from the previous report of cranial vault lymphoma in which total colonoscopy was performed.

The initial symptoms and signs of lymphoma in the skull include a painless scalp lump, headache due to bone destruction or tumor infiltration of meninges, seizures, and focal neurologic deficits secondary to neoplastic infiltration of the cerebral cortex. Lymphoma cells have been suggested to infiltrate the spaces within the diploe and extend along the emissary veins to infiltrate the soft tissues on either side of the bone. Malignant lymphoma originating from the skull may extend outside the skull with bony changes at first, followed by infiltration and complete destruction of the skull. In the present case, the skull was completely destroyed and tumor was adjacent to the dura. The dura has been reported to display strong resistance to lymphoma infiltration of the cerebral cortex. In this case, there were no focal neurologic deficits and cerebrospinal fluid cytology was negative for lymphoma cells. No obvious CNS involvement was identified.

MRI of the tumor in the present case showed iso- to hypointense signal intensity on both T1- and T2-weighted imaging. The MRI features of the present case were similar to previously reported cases. With gadolinium-DTPA (diethylenetriaminepentacetate) administration, many cranial vault lymphomas displayed homogeneous findings. As the appearance resembles that in metastatic carcinoma, osteomyelitis, or meningioma, histopathological examination is necessary to reach a definitive diagnosis.

Optimum treatment for malignant lymphoma of the skull vault has not been established. Surgical removal followed by radio- and chemotherapy has been recommended. In the present case, taking into consideration the age and absence of focal neurologic deficits, we decided to use radiotherapy instead of surgical removal of the tumor from parietal bone. Clinical observations of the present case suggest that skull vault lymphoma without obvious CNS involvement, unlike primary CNS lymphoma, does not always require intensive chemo-radiotherapy including intrathecal administration of cytotoxic agents or high-dose methotrexate/cytarabine (Ara-C).
Table 1. Clinical data and results of 19 patients with primary cranial vault lymphoma involving the skull

<table>
<thead>
<tr>
<th>Case no.</th>
<th>Authors, Year, (Reference)</th>
<th>Age/Sex</th>
<th>Initial symptom</th>
<th>Location</th>
<th>Management</th>
<th>Histology</th>
<th>Follow up and outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aghj CB, et al., 1997 [18]</td>
<td>58/F</td>
<td>Confusion, headache, local deficit</td>
<td>Right parietal</td>
<td>Surgery</td>
<td>Cleaved cell lymphoma</td>
<td>Disease-free at 7 mon</td>
</tr>
<tr>
<td>2</td>
<td>Hohlsa S, et al., 1983 [10]</td>
<td>60/F</td>
<td>Subcutaneous mass on the scalp</td>
<td>Left frontal</td>
<td>Steroid</td>
<td>Undifferentiated large cell malignant lymphoma of histiocytic type</td>
<td>Disease-free at 6 mon</td>
</tr>
<tr>
<td>3</td>
<td>Mauri F, et al., 1987 [12]</td>
<td>51/F</td>
<td>Headache, transient diplopia</td>
<td>Right parieto-occipital</td>
<td>Surgery and radiotherapy with 4,500 rads (24 Gy) and chemotherapy</td>
<td>Lymphoblastic lymphoma</td>
<td>Disease-free at 24 mon</td>
</tr>
<tr>
<td>4</td>
<td>Howat AJ, et al., 1987 [13]</td>
<td>3/M</td>
<td>Not reported</td>
<td>Left frontal</td>
<td>Whole-brain radiotherapy (24 Gy) and chemotherapy</td>
<td>Mixed large and mediumsized cell, some with cleaved nuclei NHL (diffuse medium sized type)</td>
<td>Alive at 133 mon</td>
</tr>
<tr>
<td>6</td>
<td>Parekh HC, et al., 1993 [15]</td>
<td>65/F</td>
<td>Headache, confusion, hemiparesis</td>
<td>Left parietal</td>
<td>Surgery and whole brain irradiation</td>
<td>Malignant lymphoma, B cell type, diffuse large cell type with 4,500 rads</td>
<td>Disease-free at 6 yr follow up; died of unrelated cause</td>
</tr>
<tr>
<td>7</td>
<td>Sato M, et al., 1993 [16]</td>
<td>65/F</td>
<td>Hemiparesis, parietal scalp mass</td>
<td>Right fronto-parietal</td>
<td>Surgery, radiation (50 Gy) and chemotherapy (THP-COP)</td>
<td>Low grade B-cell lymphoma centroblastic-centrocytic type with follicular pattern</td>
<td>Disease-free at 20 mon after surgery</td>
</tr>
<tr>
<td>8</td>
<td>Isla A, et al., 1996 [17]</td>
<td>75/F</td>
<td>Seizure</td>
<td>Left frontal</td>
<td>Surgery (excision) and radiation (45 Gy) and chemotherapy (VCR+cyclotin+DXR+PSL)</td>
<td>Malignant lymphoma, B cell type, diffuse large cell type</td>
<td>Disease-free at 3 yr</td>
</tr>
<tr>
<td>9</td>
<td>Main IA, et al., 1997 [18]</td>
<td>60/M</td>
<td>Headache, confusion, forgetfulness, hemiparesis</td>
<td>Right parietal</td>
<td>Surgery, external beam radiotherapy and chemotherapy (CHOP)</td>
<td>High grade non-Hodgkin B-cell lymphoma</td>
<td>Recurrence-free at 6 mon</td>
</tr>
<tr>
<td>10</td>
<td>Janjoom AB, et al., 1999 [19]</td>
<td>25/M</td>
<td>Scalp mass, headache</td>
<td>Parietal</td>
<td>Surgery and radiotherapy (5,000 cGy)</td>
<td>Malignant lymphoma, large T-cell immunoblastic type</td>
<td>Disease-free at 5 mon</td>
</tr>
<tr>
<td>11</td>
<td>Duyndam DA, et al., 2002 [20]</td>
<td>71/F</td>
<td>Scalp mass</td>
<td>Left frontal</td>
<td>Chemotherapy (chlorambucil 8 mg/day and PSL 20 mg/day) for 6 mon</td>
<td>Malignant non-Hodgkin lymphoma of the B-cell type</td>
<td>Disease-free at 2 yr</td>
</tr>
<tr>
<td>13</td>
<td>Mongia S, et al., 2003 [22]</td>
<td>25/M</td>
<td>Scalp mass</td>
<td>Right fronto-temporal-parietal</td>
<td>Radiotherapy along with adjuvant chemotherapy</td>
<td>Non Hodgkin’s lymphoma</td>
<td>Disease-free at 2.5 yr</td>
</tr>
<tr>
<td>14</td>
<td>Fukushima Y, et al., 2007 [23]</td>
<td>60/F</td>
<td>Scalp mass</td>
<td>Right parietal</td>
<td>Surgery, local radiotherapy (50 Gy) and chemotherapy (CHOP)</td>
<td>Non Hodgkin’s lymphoma of the diffuse, medium-sized, clear, B-cell type</td>
<td>Disease-free at 3 yr</td>
</tr>
<tr>
<td>15</td>
<td>Gaitonde S, et al., 2008 [24]</td>
<td>70/F</td>
<td>Forehead mass</td>
<td>Right frontal</td>
<td>Surgery and localized radiation therapy</td>
<td>Follicular lymphoma, Grade 2</td>
<td>Relapsed at 9 mon after initial therapy</td>
</tr>
<tr>
<td>16</td>
<td>Gonzalez, Bonet CG, et al., 2008 [25]</td>
<td>84/F</td>
<td>Ictus</td>
<td>Right fronto-parietal</td>
<td>Surgery</td>
<td>Immunoblastic B-cell lymphoma</td>
<td>Disease-free at 5 mon after surgery</td>
</tr>
<tr>
<td>17</td>
<td>Renard D, et al., 2009 [26]</td>
<td>67/F</td>
<td>Painful right-sided swelling</td>
<td>Right frontal</td>
<td>Chemotherapy (Rituximab+CHOP)</td>
<td>Diffuse large B-cell lymphoma</td>
<td>Not available</td>
</tr>
<tr>
<td>18</td>
<td>Fadouhair Z, et al., 2011 [27]</td>
<td>42/F</td>
<td>Enlarging mass involving right parietal bone</td>
<td>Right parietal</td>
<td>Chemotherapy (4 cycles of Rituximab+CHOP) followed by involved field radiotherapy</td>
<td>Diffuse large B-cell lymphoma</td>
<td>Disease-free at more than 9 mon after treatment</td>
</tr>
<tr>
<td>19</td>
<td>Martin J, et al., 2002 [28]</td>
<td>50/M</td>
<td>Diffuse swelling in the left side scalp</td>
<td>Left parietal and occipital</td>
<td>Chemotherapy (6 cycles of CHOP)+local adjuvant external beam radiotherapy</td>
<td>Diffuse primary cutaneous B-cell lymphoma</td>
<td>Not available</td>
</tr>
</tbody>
</table>

NHL, non-Hodgkin lymphoma; MTX, methotrexate; THP, pirarubicin; COP, cyclophosphamide, vincristine and prednisolone; VCR, vincristine; DXR, doxorubicin; PSL, prednisolone; CHOP, cyclophosphamide, doxorubicin, vincristine and prednisolone
The prognosis of malignant lymphoma appearing in the skull vault is unknown, but any involvement of cerebral structures by direct invasion or by leptomeningeal seeding and systemic involvement suggests an unfavorable prognosis. A thorough search is necessary to decide upon the treatment for lymphoma. Further accumulation of data for skull vault lymphoma is needed to improve the treatment and prognosis.

REFERENCES

Skull vault and ileocecum lymphoma