INTRODUCTION

Recently, non-Hodgkin’s lymphoma (NHL) patient outcomes have been markedly improved by combining molecular targeting therapy (rituximab) with standard chemotherapy regimens, such as cyclophosphamide, doxorubicin, vincristine, and prednisone, in both aggressive and indolent CD20+ lymphomas.

Although many patients respond well, with long-term disease-free survival, there are still some populations who have refractory or recurrent disease. Rituximab maintenance therapy during the first remission improves progression-free survival in follicular lymphoma, but does not prolong event-free, progression-free, or overall survival of patients with aggressive B-cell non-Hodgkin’s lymphoma.

HL is a rare lymphoma that accounts for approximately 10% of all lymphomas. It is a potentially curative neoplasm that is treated by anthracycline-based chemotherapy combined with radiation therapy. Recent efforts have concentrated on decreasing the treatment intensity for patients with early stage HL and on improving the outcome of advanced stage HL with more intensive regimens. An antibody drug conjugate targeting CD30, brentuximab vedotin, has proven to be highly effective for refractory or relapsed HL. Currently, the focus is on incorporating this novel therapeutic agent into standard front-line chemotherapy regimens, with
the aim of improving cure rates for the advanced disease.

Treatment with high-dose chemotherapy followed by autologous hematopoietic stem cell transplantation is known to improve both progression-free and overall survival among patients with NHL and HL in second remission.8-10 Peripheral blood stem cells (PBSC) are a preferred source for rescue after high-dose chemotherapy, owing to their more rapid hematological recovery compared with the bone marrow, with reductions in antibiotic and blood product use, as well as reduced length of inpatient stay.11,12 Currently, there are several combination chemotherapy regimens for PBSC collection, particularly the ifosfamide, carboplatin, and etoposide (ICE) regimen, which has a high efficacy and great progenitor cell mobilization capacity.13 However, the majority of patients with refractory or relapsed disease have a previous treatment history with antitumor agents such as alkylating agents or purine analogs, which may impair the mobilization of CD34+ cells. The combination of ifosfamide with etoposide and epirubicin (IVE) has been shown to have promising anti-tumor efficacy for relapsed or resistant NHL and HL.14-16 Moreover, Fox et al. have demonstrated that the IVE regimen is a more effective stem cell mobilization regimen than ICE in the context of salvage therapy for HL and NHL patients, allowing more patients to achieve CD34+ cell mobilization and proceed to high-dose therapy and autologous stem cell transplantation.17 However, the IVE regimen includes a relatively high dose of ifosfamide, which increases the risk of ifosfamide encephalopathy. Bishton et al. have reported that among 143 patients with relapsed or refractory HL and NHL treated with the IVE regimen, encephalopathy occurred in 10 patients, including three severe cases that required further treatment.16 Most cases of ifosfamide encephalopathy resolve within few days, but some patients develop irreversible central nervous system disorders. Here we will describe four lymphoma patients with relapsed or refractory disease who underwent recruitment of CD34+ cells via high-dose chemotherapy (two patients: ICE regimen one patient: high-dose cyclophosphamide one patient: original IVE regimen), which resulted in poor mobilization. They were treated with a dose-modified IVE regimen consisting of a reduced ifosfamide dosage, which resulted in successful PBSC mobilization and reasonable hematological and non-hematological toxicity without attenuating the drug efficacy.

PATIENTS AND METHODS

Patients

Two HL patients and two NHL patients were enrolled in the study. All four patients had refractory or relapsed disease after high-dose chemotherapy followed by peripheral blood stem cell collection, which resulted in insufficient stem cell mobilization. All patients provided written informed consent prior to the initiation of chemotherapy. Patient characteristics and previous treatment details are summarized in Table 1.

Treatment protocol and stem cell mobilization

Patients received a dose-modified IVE regimen. The modified IVE regimen was modified from the original IVE regimen16 and administered as follows: Ifosfamide 3 g/m²/day continuous intravenous (IV) infusion over 24 hr on days 1-2; VP-16 100 mg/m²/day IV infusion over 2 hr on days 1-3 for the two HL patients in remission and 200 mg/m²/day IV on days 1-3 for the NHL patients in non-remission; epirubicin 50 mg/m²/day over 30 min on day 1. MESNA was administered at a dose of 1.8 g/m² IV prior to the first dose of ifosfamide, 3 g/m²/day continuous IV infusion over 24 hr on days 1 and 2, and 5.4 g/m² IV over 12 hr from the completion of the ifosfamide infusion. Prophylactic phenytoin (300 mg/day) was administered from day -1 to day 8. Granulocyte colony-stimulating factor (G-CSF) was administered at a dose of 5 µg/kg daily beginning on day 5 until the comple-

Table 1. Patient characteristics

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Age</th>
<th>Diagnosis</th>
<th>Clinical stage</th>
<th>Previous chemotherapy</th>
<th>Previous mobilization regimen</th>
<th>Disease status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>49</td>
<td>cHL NS</td>
<td>II</td>
<td>ABVD, ESHAP, ICE, GVD</td>
<td>HD-AC</td>
<td>CR2</td>
</tr>
<tr>
<td>2</td>
<td>51</td>
<td>cHL MC</td>
<td>IV</td>
<td>ABVD, ICE</td>
<td>ICE</td>
<td>CR2</td>
</tr>
<tr>
<td>3</td>
<td>51</td>
<td>DLBCL</td>
<td>IV</td>
<td>R-CHOP, R-ICE</td>
<td>R-ICE</td>
<td>PD</td>
</tr>
<tr>
<td>4</td>
<td>64</td>
<td>EATL</td>
<td>IV</td>
<td>CHOP, IVE-MTX</td>
<td>IVE</td>
<td>PR</td>
</tr>
</tbody>
</table>

cHL, classical Hodgkin lymphoma; NS, nodular sclerosis; MC, mixed cellularity; DLBCL, diffuse large B-cell lymphoma; EATL, enteropathy-associated T-cell lymphoma; ABVD, adriamycin bleomycin vinblstine & dacarbasine; ESHAP, etoposide cytarabine carboplatin & melphalan; ICE, ifosfamide, carboplatin, & etoposide; GVD gemcitabine vinorelbine & dexamethasone; R-CHOP, rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone; R-ICE, rituximab, ifosfamide, carboplatin, & etoposide; IVE, ifosfamide, epirubicin & etoposide; MTX, methotrexate; HD-AC, high dose cytarabine; CR, complete remission; PD, progression disease; PR, partial remission
tion of stem cell collection.

Stem cell collection and flow cytometric analysis

Following G-CSF stimulation, peripheral leukocytes were counted, and leukapheresis was performed on the day when the white blood cell count exceeded 5×10^9 cells/L. CD34$^+$ selection was performed using COBE Spectra (Caridian BCT, Lakewood, CO) for three cases and Spectra Optia (TERUMO BCT, Tokyo, Japan) for the fourth case. Harvested PBSC was analyzed for the CD34$^+$ cell population using CYTOMICS FC500 (Beckman Coulter, Tokyo, Japan).

RESULTS

All four patients achieved a substantial increase in mobilized CD34$^+$ cells compared with that seen using the previous regimen. In patient 1, 1.3×10^6 cells/kg were mobilized, 1.9×10^6 cells/kg in patient 2, 0.67×10^6 cells/kg in patient 3, and 2.4×10^6 cells/kg in patient 4, achieving a higher total CD34$^+$ cell recruitment in all patients (Fig. 1a). In particular, 13-, 7.6-, 2.5- and 1.6-fold higher amounts of CD34$^+$ cells were recruited in the four patients on the first day of collection (Fig. 1b). Patients 1 and 2 only underwent a single procedure because they achieved a high stem cell yield, which was sufficient for autologous stem cell transplantation, whereas for patients 3 and 4, CD34$^+$ cells were collected on an additional day. In patients 1 and 2, the cells were harvested on day 14 after the initiation of the IVE regimen, whereas patients 3 and 4 required 20 and 16 days, respectively, to achieve a sufficient white blood cell count (Fig. 2). All four patients tolerated the IVE regimen well. Grade 4 neutropenia occurred in two patients who received a 200 mg/m2 dose of VP-16, grade 4 thrombocytopenia and grade 3 anemia, which required multiple blood transfusions, occurred in three patients. Non-hematological toxicity was at an acceptable level in all patients; grade 1 febrile neutropenia occurred in one patient. Patients 1 and 2 had tumor remission upon initiation of the modified IVE regimen, and this was maintained after the treatment. Patient 3 and 4 had residual disease before the initiation of the modified IVE regimen, which resulted in complete remission after the modified IVE regimen treatment. All four patients proceeded to autologous stem cell transplantation that achieved neutrophil engraftment on day 11 in patient 2 and on day 12 in patients 1, 3 and 4.

DISCUSSION

This is a single center study analyzing the efficacy and the stem cell mobilization capacity of the modified IVE regimen. The conventional IVE regimen was described by Zinzani et al. as a salvage therapy for patients with relapsed HL and NHL. Recently McQuaker et al. have used the IVE regimen as both a salvage and stem cell mobilization therapy. Furthermore, they showed that IVE, in combination with G-CSF, is an effective regimen for stem cell mobilization even in those heavily pretreated patients who have had poor or failed mobilization previously with the cyclophosphamide and G-CSF combination. Subsequently, the IVE regimen was shown to have a high efficacy as a salvage therapy for HL and B-cell NHL. Furthermore, as a salvage therapy for HL and NHL, Fox et al. demonstrated that the IVE regimen has a more effective stem cell mobilization capacity than the ICE regimen, thus allowing more patients to achieve the target CD34$^+$ cell numbers. IVE seems to have a high efficacy for both the anti-lymphoma effects and the stem cell mobilization capacity; however, the neurotoxicity of ifosfamide is a matter of great concern. In the conventional IVE regimen, patients are administered a total of 9 g/m2 ifosfamide. With this amount of ifosfamide, 7% of patients developed ifosfamide encephalopathy, including three cases with a severe disease status that required methylene blue administration. In this study, patients with hypoalbuminemia, abnormal liver function, renal impairment or previous encephalopathy episodes were regarded as a high-risk group. Some patients in the high-risk group received dose reductions
of ifosfamide, which resulted in only two out of 13 cases developing encephalopathy, whereas all high-risk patients without dose adjustment developed encephalopathy. Used as a salvage therapy, patients are likely to be heavily pretreated and have a tendency toward having low residual organ functions. In a previous study by Tajino et al., ifosfamide encephalopathy occurred in 31.2% of Japanese patients with bone and soft tissue sarcoma when ifosfamide at a dose of 9 g/m² or more was administered. In that report, previous cisplatin treatment was associated with an increased risk of encephalopathy onset.²² Therefore, we conducted our study using an ifosfamide dose of 6 g/m² instead of 9 g/m². Furthermore, the patient with remission disease received a half dose of etoposide. Thus, in three patients, more than twice as many CD34⁺ cells were mobilized in a single harvest without reducing the anti-tumor effects, compared with that during a previous mobilization regimen. In our study, all four patients were heavily pretreated, but with a poor mobilization yield; however, all patients substantially achieved improvement in CD34⁺ mobilization with our regimen, and with minimal non-hematologic toxicity. Moreover, patient 4 was treated with the original IVE regimen for the first mobilization, but developed severe sepsis that resulted in systemic condition deterioration, which may have affected the poor CD34 cell mobilization. This patient was re-mobilized successfully by treatment with a dose-modified IVE regimen without degrading the patient’s performance status. None of our patients developed ifosfamide encephalopathy or infections during the treatment course. Though this study involved too small a sample size to discuss the role of the modified IVE regimen, it may become a cornerstone for the treatment choice of both stem cell mobilization and salvage therapy for malignant lymphoma.

CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.

REFERENCES

17 Fox CP, McMillan AK, Bishton MJ, Haynes AP, Russell NH: IVE (ifosfamide, epirubicin and etoposide) is a more effective stem cell mobilisation regimen than ICE (ifosfamide, carboplatin and etoposide) in the context of salvage therapy for lymphoma. Br J Haematol 141:244-248, 2008

