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INTRODUCTION
Chronic lymphocytic leukemia (CLL) is the most com-

mon adult leukemia.   It is characterized by the clonal expan-
sion of CD5+ mature B cells in the blood, bone marrow, and 
lymphoid tissues.1   CLL typically affects elderly people.2   
Recent advances in next-generation sequencing (NGS) tech-
nologies revealed recurrent somatic mutations and identified 
the molecular pathways involved in CLL pathogenesis.   
Furthermore, the analysis of clonal architecture clarified that 
CLL genomes exhibit heterogeneity between patients with 
CLL and within cells of individual patients.3   Such advances 
in genetic lesion analysis significantly improved our under-
standing of the leukemogenic process of CLL.   Moreover, 
CLL leukemogenesis has been described as a multistep pro-
cess originating from immature hematopoietic stem cells 
(HSCs).4,5   Thus, our understanding of CLL biology has sig-
nificantly improved in the last decade.   The clinical efficacy 
of novel drugs against CLL, such as the tyrosine kinase 
inhibitor ibrutinib and the B cell lymphoma 2 (BCL2) antag-
onist venetoclax, has markedly improved the standard of care 
for specific subsets of patients with CLL.   This review 
focuses on recent insights into CLL leukemogenesis, empha-
sizing the immunological aspects of B cell receptors (BCRs), 
genetic lesions, and the process of multistep CLL leukemo-
genesis.   It also describes the advances in the field of basic 

CLL research and the development of novel therapeutic strat-
egies against CLL.

BIOLOGICAL AND IMMUNOLOGICAL 
FEATURES OF CLL

CLL is a B cell malignancy characterized by accumulat-
ing mature clonal CD5-expressing B cells.6-8   The CLL prev-
alence markedly increases with age.   CLL cells express func-
tional BCRs on their surfaces.6,9,10   CLL is classified into two 
subgroups based on the presence of somatic hypermutations 
within the variable regions of the immunoglobulin heavy 
chain gene (IGHV).   Patients with CLL with mutated IGHV 
(IGHV-M CLL) have a more favorable prognosis than those 
with unmutated IGHV (IGHV-UM CLL).11   The somatic 
hypermutations occur in the process of normal B cell devel-
opment in the germinal centers during the naïve-to-memory 
B cell transition.   Initial studies proposed distinct origins of 
the two types of CLL, with IGHV-UM CLL originating from 
naïve B cells and IGHV-M CLL originating from antigen-
experienced B cells, including memory B cells.   However, 
immunological analysis of CLL-BCRs revealed that both 
types recognized self-antigens, at least in vitro, suggesting 
that CLL originates from self-reactive B cell precursors, irre-
spective of the IGHV mutation status.12,13   The self-reactivity 
of BCRs from CLL is one of the most extensively investigated 
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biological features of human CLL.   BCR signaling is consti-
tutively activated and is an important biological feature of 
CLL cells,14 providing rationale for BCR signaling-targeted 
therapies for CLL.   Of note, the BCRs of ~1% of CLL cases 
express a nearly identical amino acid sequence of heavy 
chain complementarity-determining region 3 (HCDR3), and 
the BCRs of CLL cells can be classified as specific stereo-
typed BCRs in ~30% of CLL cases.15-17   These observations 
led to the hypothesis that some common self-antigens recog-
nized by CLL-BCRs drive clonal expansion and play a sig-
nificant role in CLL pathogenesis.   Consistent with this 
hypothesis, recent studies successfully identified common 
auto- or exoantigens, including myosin heavy chain IIA,18 
β-(1,6)-glucan,19 and rheumatoid factors (RFs).20,21   Such 
antigens are considered drivers of the expansion of CLL cells 
via BCR signaling.

In addition to the antigen-dependent mechanisms of 
CLL-BCR activation, two recent studies clarified the antigen-
independent BCR activation mechanism in CLL.   Duhren-
von Minden et al. revealed that HCDR3 of CLL-BCRs rec-
ognizes the specific amino acids of the second framework 
region of immunoglobulins (Igs), inducing Ca2+ signaling 
independent of specific antigens.22   Consistent with this the-
ory, Binder et al. identified the alternative epitope recognized 
by CLL-BCRs in the third framework region of Igs.23   Thus, 
CLL-BCRs have unique HCDR3 rearrangements that ensure 
basal BCR signaling activity via the self-recognition of CLL-
BCRs.   This characteristic may be specific to CLL-BCRs 
because BCRs from other B cell malignancies lack the self-
recognition of Igs.22   Furthermore, it is consistent with CLL-
BCRs being able to bind the Igs component, acting like 
RFs.20,21,24,25   Collectively, these studies suggest the presence 
of antigen-dependent and -independent mechanisms for the 
constitutive activation of BCR signaling in CLL.

CLL INTERACTION WITH THE 
MICROENVIRONMENT

In addition to cell-intrinsic molecular mechanisms that 
regulate the survival and proliferation of CLL cells, the inter-
action between CLL cells and their microenvironment also 
plays an essential role in CLL progression.26,27   CLL cells 
recirculate between peripheral blood and secondary lymphoid 
tissues, where CLL cells proliferate at a daily birth rate of 
0.1%–2.0% of all CLL clones in humans.28   The lymphoid 
tissues of CLL exhibit unique histopathological features 
termed proliferation centers or pseudofollicles.29   The hom-
ing process to such lymphoid tissues is essential for CLL 
propagation and is tightly regulated by cytokines, chemo-
kines, chemokine receptors, and adhesion molecules.   CLL 
cells secrete several cytokines that attract accessory cells, 
such as T cells and monocytes/macrophages, thereby altering 
their anti-leukemic activity.30-33   T cells from CLL patients 
exhibit features of exhaustion but retain their capacity for 
cytokine production,34 and such T cells demonstrate impaired 
immunological synapse formation.35   CLL cells alter T cell 
gene expression via direct cell–cell contact.36   Of note, 

alterations in T cell subsets, such as helper T cells and Th17 
cells, have been reported in CLL patients with autoimmune 
cytopenia.37

Nurse-like cells (NLCs) represent an important compo-
nent of the CLL microenvironment.   They are derived from 
monocytic cells and are found in the lymphoid organs of CLL 
patients.38,39   NLCs exhibit gene expression patterns similar 
to M2 macrophages and tumor-associated macrophages,40,41 
which support the propagation of solid tumors.   Of note, 
CLL cells produce extracellular nicotinamide phosphoribos-
yltransferase, which is involved in the induction of monocyte 
polarization to M2 macrophages secreting tumor cytokines 
and inhibiting T cell response.42   Gene expression analysis 
revealed that the interaction between CLL cells and NLCs 
activated BCR and NF-κB signaling pathways in CLL.43,44   
Consistent with the alteration of gene expression signatures, 
CLL-BCR recognizes some antigens, such as vimentin and 
calreticulin, that are highly expressed on NLCs.45   Thus, the 
interaction between CLL cells and NLCs is one of the CLL-
specific mechanisms driving BCR signaling in CLL.

In addition to hematopoietic cells, mesenchymal stromal 
cells are also involved in CLL pathogenesis as one of the 
essential components of the CLL-specific microenvironment.   
Bone marrow stromal cells (BMSCs) support CLL cell sur-
vival through direct cellular interaction,46 and protect CLL 
cells from spontaneous and drug-induced apoptosis.47   
Similar to NLCs, direct cellular interactions between CLL 
cells and BMSCs induce BMSC activation via the protein 
k inase  C  (AKT) -β I I /NF-κB  s igna l ing  pa thway. 48   
Furthermore, CLL cells release microvesicles carrying sig-
naling molecules that  activate the AKT pathway in 
BMSCs.49,50   Thus, both direct and indirect interactions result 
in bidirectional crosstalk between CLL cells and BMSCs.   
These studies highlight the significance of the microenviron-
ment in CLL pathogenesis.   Thus, further studies targeting 
the CLL-specific microenvironment will aid in the develop-
ment of novel therapeutic strategies.

GENETIC AND EPIGENETIC 
CHARACTERISTICS OF CLL

Although the majority of CLL cases develop sporadically, 
an inherited predisposition to CLL has been reported.51   
Relatives of CLL patients have an increased risk of CLL and 
non-Hodgkin’s lymphoma.52   Furthermore, the incidence of 
CLL is highest in Europe and individuals of European 
descent worldwide, whereas the lowest incidence is in East 
Asia, including Japan.   Furthermore, a study of migrants 
revealed a low incidence of CLL in Asian individuals born in 
the United States.53   These observations suggest the presence 
of a genetically inherited predisposition to CLL.   Several 
genome-wide association studies (GWASs) identified multi-
ple risk loci for CLL;54-58 however, the statistical power of 
individual GWASs was limited due to the modest effect size 
of each genetic variant.

Chromosomal abnormalities in CLL have been exten-
sively investigated and utilized for risk assessments of CLL, 
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in addition to the genetic predisposition of CLL revealed by 
GWAS.59   CLL cells harbor immunoglobulin heavy chain 
(IgH)-related translocations at markedly low frequencies 
compared with other types of mature B cell malignancies.   
This genetic characteristic distinguishes CLL from other 
mature B cell malignancies.

The most frequently observed genetic lesions in CLL are 
13q14 deletions (del13q14), found in 50%–60% of cases.59,60   
These are mostly monoallelic and more frequently observed 
in IGHV-M CLL cases than in IGHV-UM CLL cases.   
Del13q14 is generally associated with a favorable prognosis, 
but the clinical course of CLL is accelerated in patients with 
large 13q14 deletions involving the retinoblastoma gene 
(RB1).61   The long non-coding RNAs DLEU2 and DLEU1 
and the microRNA clusters miR15A–miR16-1 are found in 
the minimal deleted region of del13q14.62-66   Model mice 
harboring deletions of the corresponding murine locus devel-
oped clonal B cell lymphoproliferative disorders, suggesting 
the significant role of microRNA in CLL pathogenesis.67   
Furthermore, the deletion of microRNAs miR-15A–miR-
16-1 resulted in BCL2 overexpression,68 providing rationale 
for CLL therapeutic strategies targeting BCL2.

The second common chromosomal abnormality of CLL is 
deletions in the 11q22–q23 (del11q) chromosomal region, 
detected in ~15% of cases.59,60,69   Del11q leads to the loss of 
tumor suppressor gene ataxia telangiectasia mutated (ATM), 
which encodes the DNA damage response (DDR) kinase 
ATM.70   Of note, ~25% of CLL patients with del11q dele-
tions harbor mutations in the remaining ATM allele, and the 
combination of del11q and ATM mutation is associated with 
a poor prognosis.71

The third frequently observed chromosomal abnormality 
is trisomy 12, found in ~15% of patients with CLL.59,60   
Trisomy 12 is a genetic lesion yielding intermediate risk.   
However, the coexistence of NOTCH1 mutations and trisomy 
12 is associated with poor survival.72   Moreover, CLL 
patients with trisomy 12 have a higher risk of transformation 
into Richter syndrome (RS).73-75   As RS has a poor clinical 
prognosis, further studies are recommended to identify the 
molecular mechanisms by which trisomy 12 increases the 
risk of RS transformation.

Deletions in the 17p13 chromosomal locus (del17p) are 
observed in ~10% of patients with CLL59,60,69 and are more 
frequently observed in IGHV-UM CLL cases than in 
IGHV-M CLL cases.59   Del17p deletions usually involve the 
entire short arm of chromosome 17, leading to the loss of the 
tumor suppressor gene TP53.76   Missense mutations in the 
remaining TP53 allele are found in ~80% of patients with 
CLL and del17p.77,78   Consistent with the inactivation of 
TP53, patients with del17p exhibit high genomic complexity 
and a poorer overall prognosis than those with wild-type 
TP53.59,76-80   Clinically, the assessment of del17p and TP53 
mutation status is essential to select the appropriate therapeu-
tic strategies against CLL.

In addition to the extensive chromosomal abnormalities 
described above, advances in NGS technologies revealed 
recurrent driver mutations in CLL such as SF3B1, ATM, 

TP53, NOTCH1, POT1, CHD2, XPO1, BIRC3, BRAF, 
MYD88, EGR2, MED12, FBXW7, ASXL1, KRAS, NRAS, 
MAP2K1, NFKBIE, TRAF3, RPS15, and DDX3X.5,60,81-84

The most frequently mutated gene in CLL is SF3B1 
(10%–15% of cases) and the SF3B1 K700E mutation is the 
most common.81-83   SF3B1 mutations cause alternative splic-
ing in CLL cells and induce RNA changes affecting multiple 
CLL-associated pathways, including DDR, telomere mainte-
nance, and NOTCH signaling.85   In addition to SF3B1, sev-
eral genes involved in RNA splicing, processing, and trans-
port, such as DDX3X and XPO1, are mutated in CLL at lower 
frequencies, suggesting that deregulated RNA processing is 
one of the major pathogenic pathways in CLL development.

NOTCH1 is the second most commonly mutated gene in 
CLL (~10% of cases)60,84,86 and NOTCH1 mutations are pref-
erentially observed in IGHV-UM CLL.   Of note, ~40% of 
patients with NOTCH1-mutated CLL harbor trisomy 12, 
implying a relationship of these two genetic aberrations with 
CLL development.72,87   The majority of NOTCH1 mutations 
in CLL increase the nuclear NOTCH intracellular domain by 
abrogating the PEST domain, which is necessary for F-box/
WD repeat-containing protein 7-mediated proteasomal degra-
dation of NOTCH1.3,84,88   FBXW7-inactivating mutations 
have also been observed in ~3% of patients with CLL with-
out NOTCH1 mutations, demonstrating an analogous out-
come of increased NOTCH1 signaling.    Moreover, 
NOTCH1 activation independent of NOTCH1 mutations has 
been reported in CLL cells.89,90   Thus, multiple mechanisms 
activate the NOTCH1 pathway in CLL pathogenesis.91

Somatic mutations affecting inflammation-related genes, 
such as MYD88, NFKBIE, BIRC3, and TRAF3, have been 
identified as recurrent mutations in CLL.5,83,92   Mutations in 
the TLR/MYD88 pathway can be used to identify a subset of 
young CLL patients with a favorable outcome.93   Thus, path-
ological pathways involved in CLL leukemogenesis include 
inflammatory pathways and their downstream signaling.   
POT1 mutations are found in 3%–7% of CLL patients and 
are frequently observed in IGHV-UM CLL.60,81,82,84,94   POT1 
plays an essential role in telomere protection95 and is required 
to maintain the self-renewal capacity of HSCs in normal 
hematopoiesis.96   POT1 mutations in CLL alter the telomeric 
DNA-binding domain, leading to structural aberrations and 
chromosomal instability.94   Thus, the disruption of genes 
involved in DDR, such as TP53, ATM, and POT1, plays a 
significant role in CLL development.

In addition to the identification of recurrent mutations in 
CLL cells, a recent global epigenomic status analysis 
revealed the regulatory chromatin landscape of CLL, and 
clarified that IGHV-UM CLL cells harbor more active and 
open chromatin than IGHV-M CLL cells.   Furthermore, de 
novo active regions in CLL cells are enriched for NFAT, 
FOX, and TCF/LEF transcription factors.97   Of note, most 
genetic alterations are not associated with specific epigenetic 
profiles, and CLL with MYD88 mutations and trisomy 12 
exhibit distinct chromatin configurations.97   In summary, 
genetic lesions in CLL can be categorized according to sev-
eral biological pathways such as BCR signaling, inflammatory, 
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NOTCH1 signaling, DDR, RNA and ribosomal processing, 
genome/chromatin structure, NF-κB signaling, cell cycle, and 
apoptosis.60,84   These deregulated biological pathways coor-
dinately drive CLL leukemogenesis in humans (Figure 1).

MULTISTEP CLL LEUKEMOGENESIS IS 
INITIATED BY SELF-RENEWING HUMAN HSCs

After describing the important molecular pathways iden-
tified in NGS studies that are involved in CLL pathogenesis, 
we next focused on how such oncogenic events initiate and 
accumulate during leukemogenesis.   The pathogenesis of 
other types of human leukemia, including acute myeloid leu-
kemia, acute lymphoblastic leukemia, and chronic myeloid 
leukemia, is directly related to HSCs and immature progeni-
tor cells.   However, CLL is the exception because it is 
thought to directly originate from mature B cells.   When 
tracing the origins of human CLL, it must be noted that it is 
not always monoclonal.98,99   Moreover, a large cohort study 
demonstrated that nearly all patients with CLL had prior 
monoclonal B cell lymphocytosis (MBL),100 a preleukemic 
state of CLL with the asymptomatic proliferation of clonal B 
cells and circulating numbers <5,000/μl.101   MBL prevalence 
increases with age,100,102 ranging from <1%103,104 to 18%.105   

Of note, human MBL sometimes comprises oligoclonal B 
cell clones.106-110

Although the progression from MBL to CLL is a stepwise 
process, the stage at which the first oncogenic event occurs 
remains unknown.   The existence of oligoclonal B cell 
clones in both patients with CLL and MBL suggests that the 
first oncogenic events occur as far back as progenitor cells or 
HSCs.   These observations led us to evaluate the primitive 
HSC fraction in patients with CLL and we found that the pro-
pensity to generate clonal mature B cells was present in 
HSCs.   Although CLL cells were never directly engrafted in 
xenograft models, HSCs from patients with CLL caused 
abnormal monoclonal or oligoclonal mature B cells in vivo.111   
Moreover, NGS studies confirmed that CD34+CD19− hemato-
poietic stem/progenitor cells (HSPCs) and myeloid cells from 
patients with CLL shared somatic mutations identical to 
those detected in CLL cells.   Such recurrent mutations 
included NOTCH1, SF3B1, BRAF, TP53, XPO1, MED12, 
NFKBIE, and EGR2.5,112,113   Whole-genome sequencing also 
confirmed shared mutations between MBL/CLL cells and 
their respective polymorphonuclear cells, suggesting that the 
acquisition of some somatic mutations occurs before disease 
onset, likely at the HSC stage.114   Moreover, the activation of 
NOTCH1 pathways is deeply involved in CLL leukemogenesis.91   

Fig. 1. Summary of the pathways and molecules involved in CLL pathogenesis. These deregulated biological pathways are affected 
by genetic and non-genetic mechanisms, and coordinately drive CLL leukemogenesis.
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The NOTCH1 signaling pathway is aberrantly activated in 
HSPCs from patients with CLL regardless of NOTCH1 muta-
tion status (compared with the HSPC levels in healthy 
donors), suggesting that NOTCH1 activation is an early 
event in CLL leukemogenesis that may lead to the develop-
ment of aberrant HSPCs in patients with CLL.113   Consistent 
with this, advances in the analysis of IgH genes using NGS 
technology confirmed the presence of independent oligoclo-
nal B cell clones (even in immunophenotypically monoclonal 
CLL patients).115   Thus, the initial oncogenic events target 
self-renewing HSCs in CLL in humans.

Recent studies clarified that the initial oncogenic events 
target HSPCs in several types of human mature lymphoid 
malignancies in addition to CLL.116-119   Several studies using 
a mouse model of mature lymphoid malignancies revealed 
that the lymphoma-specific oncogenes expressed in HSPCs 
can initiate lymphomagenesis more effectively than those 
expressed in mature B cells,116,118,120-122 supporting the model 
of multistep leukemogenesis or lymphomagenesis initiation 
from HSPCs.   These studies provided novel models of leu-
kemogenesis/lymphomagenesis.   Thus, the cellular stages of 
tumor initiation and final transformation are distinct, and the 
stage-specific oncogenic events coordinately propagate the 
tumor in humans.   Further studies are necessary to elucidate 
the detailed molecular mechanisms underlying the multistep 
leukemogenesis/lymphomagenesis of mature lymphoid 

malignancies in humans.

NOVEL DRUGS FOR CLL TREATMENT
Chemoimmunotherapy using anti-CD20 monoclonal anti-

bodies, such as the fludarabine, cyclophosphamide, and ritux-
imab regimen,123 remains the standard reference treatment for 
CLL patients aged <65 years with good health and low-risk 
prognostic factors.   Recent advances in the understanding of 
CLL pathogenesis markedly improved the range of therapeu-
tic applications for CLL treatment.   Therapeutic strategies 
targeting BCR signaling have been developed due to the 
essential role of BCR signaling in CLL pathogenesis.   
Furthermore, venetoclax, a BCL2 inhibitor, markedly altered 
the therapeutic strategy for CLL treatment.   The novel drugs, 
and their target molecules and pathways in CLL are summa-
rized in Figure 2.

Regarding surface molecules, CD19, CD20, and CD52 
have been extensively investigated as therapeutic target mol-
ecules for CLL.   CD19, a member of the Ig superfamily, is a 
B cell lineage specific surface molecule involved in BCR sig-
nal transduction.124   The expression of CD19 is restricted to 
the B cell lineage and HSCs and the majority of hematopoi-
etic cells lack its expression; therefore, CD19 represents a 
specific therapeutic target for B cell malignancies.   T cells 
bearing a chimeric antigen receptor (CAR T cells) have been 

Fig. 2. Summary of novel drugs and their target molecules and pathways.
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developed as a new cellular therapy.125   The most advanced 
CAR T cells developed to date target human CD19; tisagen-
lecleucel and axicabtagene ciloleucel.   The Food and Drug 
Administration (FDA) approved tisagenlecleucel for the 
treatment of refractory B-ALL and refractory diffuse large B 
cell lymphoma (DLBCL), and axicabtagene ciloleucel for 
refractory DLBCL.   The efficacy of CAR T cells against 
CLL was first reported in 2011126 and the number of CLL 
patients treated using CAR T cells increased in a series of 
clinical trials.127-131   CLL was one of the first diseases for 
which CAR T cells were used; however, the therapeutic 
experience of CAR T cells is less extensive for CLL due to 
the relatively lower efficacy against CLL than against B-ALL 
or DLBCL.132   CAR T cell therapy is highly effective, but it 
can induce substantial toxicities such as cytokine release syn-
drome and neurotoxicity.   To overcome these problems, a 
recent study employed CAR natural killer cells (CAR NK 
cells), and demonstrated the rapid and persistent efficacy of 
CAR NK cells against B cell malignancies, including CLL, 
without the development of major toxicities.133

CD20 is a surface glycoprotein expressed on mature B 
cells and its expression is restricted to the B cell lineage.   
HSCs and the majority of hematopoietic cells lack its expres-
sion; therefore, anti-CD20 monoclonal antibodies, such as 
rituximab, ofatumumab, and obinutuzumab, have been devel-
oped and utilized in the treatment of mature B cell malignan-
cies.   Anti-CD20 antibodies are classified into two groups, 
type I and type II, based on the differences in the epitope and 
binding mode.134   Rituximab and ofatumumab belong to the 
type I group.   Type I antibodies can stabilize CD20 mole-
cules on lipid rafts, leading to increased C1q binding and the 
induction of strong complement-dependent cytotoxicity 
(CDC).   In contrast, type II antibodies, such as obinutu-
zumab, cannot stabilize CD20 on lipid rafts, resulting in 
reduced binding potential to C1q and lower levels of CDC; 
however, they may directly induce cell death.134,135   A recent 
study revealed the differential binding mechanisms of thera-
peutic anti-CD20 antibodies, including rituximab, ofatu-
mumab, and obinutuzumab.136

Rituximab, an anti-CD20 chimeric monoclonal antibody, 
has revolutionized the therapeutic strategies for mature B cell 
malignancies, including CLL.   Rituximab was demonstrated 
as effective and tolerable as monotherapy for non-Hodgkin’s 
lymphoma (NHL);137-140 however, rituximab monotherapy 
was less effective against CLL.141   In contrast to rituximab 
monotherapy, chemoimmunotherapy using rituximab, such as 
the fludarabine, cyclophosphamide, and rituximab regimen, 
is significantly effective against CLL.123,142

Ofatumumab is a human monoclonal anti-CD20 antibody 
that targets a small-loop, membrane-proximal epitope of the 
CD20 molecule.143   Ofatumumab monotherapy is an effec-
tive, well-tolerated treatment for fludarabine-refractory CLL 
patients.144   The safety and efficacy of combination thera-
pies,145,146 and maintenance therapy147 using ofatumumab 
were investigated in several studies.

Obinutuzumab is a humanized, afucosylated, type II anti-
CD20 antibody.   A phase 1/2 clinical study revealed that 

obinutuzumab monotherapy is effective for patients with 
heavily pretreated relapse/refractory CLL.148   A randomized 
phase 3 trial demonstrated that the addition of obinutuzumab 
to chlorambucil significantly prolonged overall survival com-
pared with chlorambucil monotherapy in untreated CLL 
patients not eligible for intensive chemotherapy.149

Alemtuzumab is an anti-human CD52 humanized IgG1 
monoclonal antibody.   A variety of human lymphoid malig-
nancies and normal lymphocytes express CD52 antigens.   
The efficacy of alemtuzumab was investigated in previously-
treated150,151 and untreated CLL patients,152,153 and the FDA 
approved it for the treatment of fludarabine-refractory CLL in 
2001.   The major toxicities of alemtuzumab treatment 
include infusion reactions, myelosuppression, and immuno-
suppression.   In particular, infectious events were observed 
in several clinical trials151,154 due to immunosuppression by 
CLL and T cell depletion by alemtuzumab.

In addition to surface molecules, therapeutic strategies 
targeting BCR signaling have been developed for CLL treat-
ment.   Ibrutinib, a Bruton tyrosine kinase (BTK) inhibitor, is 
an orally bioavailable small molecule that covalently bonds 
to the cysteine-481 residue of BTK.   Ibrutinib exhibited 
potent activity against previously treated CLL or CLL with 
TP53 aberrations,155-158 and is increasingly used as monother-
apy or tested in combination with other regimens.   Of note, 
BTK inhibitors exert anti-CLL activity by inhibiting BCR 
signaling, and the interaction between CLL cells and their 
microenvironment.159   Ibrutinib treatment releases CLL cells 
from their microenvironment, where they are required for 
CLL proliferation, into peripheral blood, leading to apoptosis 
via the downregulation of several adhesion molecules.160-162   
Ibrutinib also alters the immunosuppressive CLL microenvi-
ronment by inhibiting signal transducer and activator of tran-
scription 3 pathways.163   Although it has high clinical effi-
cacy, disease progression during ibrutinib treatment has been 
reported.   Ibrutinib resistance is due to CLL clones harboring 
mutations in BTK and PLCG2, a downstream molecule of 
BTK in the BCR signaling pathway, which drive the clonal 
expansion of CLL during ibrutinib treatment.164-167   New 
BTK inhibitors, such as acalabrutinib, tirabrutinib, and zanu-
brutinib, have been developed, and their efficacies and safety 
profiles were clarified in clinical trials.168-171   Recent studies 
investigating acalabrutinib, a second generation BTK inhibi-
tor, confirmed the efficacy of combination therapy consisting 
of acalabrutinib and obinutuzumab in patients with treatment 
naïve and relapse/refractory CLL.168,172   Further studies will 
aid in the development of safe and effective therapeutic strat-
egies using BTK inhibitors.

Phosphatidylinositol 3-kinases (PI3Ks) integrate and 
transduce signals from BCR, chemokine receptors, and adhe-
sion molecules.173-175   They are subdivided into classes I, II, 
and III.   Class I PI3Ks comprise four isoforms, PI3K α, β, γ, 
and δ.   PI3Kδ expression is primarily restricted to hemato-
poietic cells, and it plays an essential and nonredundant role 
in BCR signaling.176-178   Idelalisib is a potent and selective 
PI3Kδ inhibitor179,180 that exerts anti-CLL effects by suppress-
ing BCR signaling, and the interaction between CLL cells 
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and their microenvironment.180   Oral idelalisib therapy 
exhibited a favorable safety profile and rapidly induced stable 
disease control in most heavily pretreated CLL patients.181   
The combination therapy of idelalisib and rituximab resulted 
in a higher overall response rate than rituximab monotherapy 
in relapsed CLL patients.182,183   Another combination therapy 
of idelalisib, bendamustine, and rituximab improved progres-
sion-free survival compared with bendamustine plus ritux-
imab alone in patients with relapsed or refractory CLL, but 
an increased risk of infection was reported in the idelalisib 
group.184   Next-generation PI3K inhibitors, such as 
duvelisib, copanlisib, and umbralisib, were previously devel-
oped.185-188   Duvelisib, a dual inhibitor of PI3Kδ and PI3Kγ, 
was approved by the FDA for relapsed or refractory CLL/
small lymphocytic lymphoma in 2018 based on the results of 
the phase 3 DUO trial.189

In addition to novel drugs targeting BCR signaling path-
ways, such as BTK and PI3K inhibitors, the BCL2 inhibitor 
venetoclax has also markedly altered CLL treatment.   This 
BH3 domain mimic prevents the interaction between BCL2 
and BH3, and inhibits the anti-apoptotic effects of BCL2.   
As constitutively activated BCR signaling and the most fre-
quently observed chromosomal abnormality del13q14 cause 
high levels of BLC2 expression, BCL2 represents a reason-
able therapeutic target in CLL.   The efficacy and safety of 
daily oral venetoclax for relapsed or refractory CLL was 
reported in a phase 1 dose-escalation study.190   A phase 2 
study of venetoclax monotherapy in patients with relapsed or 
refractory CLL with del17p reported an overall response rate 
of 79.4% at a median follow-up of 12.1 months.191   The 
phase 3 MURANO trial in patients with relapsed or refrac-
tory CLL compared the combination of venetoclax/rituximab 
with that of bendamustine/rituximab therapy, resulting in a 
2-year progression-free survival rate of 84.9% and 36.3%, 
respectively.192   This study evaluated the minimal/measur-
able residual disease (MRD) status using multicolor flow 
cytometry and polymerase chain reaction assays, and the fre-
quencies of the patients who achieved a negative MRD status 
were significantly higher in the venetoclax/rituximab treat-
ment group than in the bendamustine/rituximab treatment 
group.192   Similarly, the recent phase 2 CLARITY trial inves-
tigating the combination of ibrutinib and venetoclax for 
relapsed or refractory CLL reported a high rate of MRD erad-
ication.193   Based on these studies, an MRD-guided treatment 
strategy may be the standard of care for CLL in the near 
future.   Further studies will be helpful to establish therapeu-
tic strategies using such novel drugs and improve the clinical 
outcome of CLL.

CONCLUSIONS AND PERSPECTIVES
Our understanding of the pathogenesis of CLL has mark-

edly improved in the last decade regarding recurrent muta-
tions, immunological aspects of CLL-BCR, and the initiation 
of multistep leukemogenesis by HSCs.   Furthermore, the 
development of novel drugs targeting molecules essential for 
CLL has significantly improved the clinical outcome of CLL 

patients.   Based on both basic and clinical studies, we plan to 
further investigate CLL biology to overcome this disease.
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